Genotype-by-environment interaction and stability analysis of grain yield of bread wheat ( L.) genotypes using AMMI and GGE biplot analyses.

Destaw Mullualem, Alemu Tsega, Tesfaye Mengie, Desalew Fentie, Zelalem Kassa, Amare Fassil, Demekech Wondaferew, Temesgen Assefa Gelaw, Tessema Astatkie
Author Information
  1. Destaw Mullualem: Department of Biology, College of Natural and Computational Science, Injibara University, Injibara, Ethiopia.
  2. Alemu Tsega: Department of Biology, College of Natural and Computational Science, Injibara University, Injibara, Ethiopia.
  3. Tesfaye Mengie: Department of Biology, College of Natural and Computational Science, Injibara University, Injibara, Ethiopia.
  4. Desalew Fentie: Department of Plant Science, College of Agriculture, Food and Climate Science, Injibara University, 40, Injibara, Ethiopia.
  5. Zelalem Kassa: Department of Plant Science, College of Agriculture, Food and Climate Science, Injibara University, 40, Injibara, Ethiopia.
  6. Amare Fassil: Department of Biology, College of Natural and Computational Science, Injibara University, Injibara, Ethiopia.
  7. Demekech Wondaferew: Department of Plant Science, College of Agriculture, Food and Climate Science, Injibara University, 40, Injibara, Ethiopia.
  8. Temesgen Assefa Gelaw: Department of Biotechnology, College of Agriculture and Natural Resource Sciences, Debre Birhan University, Debre Birhan, Ethiopia.
  9. Tessema Astatkie: Faculty of Agriculture, Dalhousie University, Truro, Nova Scotia, Canada.

Abstract

Bread wheat is a vital staple crop worldwide; including in Ethiopia, but its production is prone to various environmental constraints and yield reduction associated with adaptation. To identify adaptable genotypes, a total of 12 bread wheat genotypes (G1 to G12) were evaluated for their genotype-environment interaction (GEI) and stability across three different environments for two years using Additive Main Effect and Multiplicative Interaction (AMMI) and genotype main effect plus genotype-by-environment interaction (GGE) biplots analysis. GEI is a common phenomenon in crop improvement and is of significant importance in genotype assessment and recommendation. According to combined analysis of variance, grain yield was considerably impacted by environments, genotypes, and GEI. AMMI and GGE biplots analysis also provided insights into the performance and stability of the genotypes across diverse environmental conditions. Among the 12 genotypes, G6 was selected by AMMI biplot analysis as adaptive and high-yielding genotype; G5 and G7 demonstrated high stability and minimal interaction with the environment, as evidenced by their IPCA1 values. G7 was identified as the most stable and high-yielding genotype. The GGE biplot's polygon view revealed that the highest grain yield was obtained from G6 in environment three (E3). E3 was selected as the ideal environment by the GGE biplot. The top three stable genotypes identified by AMMI stability value (ASV) were G5, G7, and G10, while the most stable genotype determined by Genotype Selection Index (GSI) was G7. Even though G6 was a high yielder, it was found to be unstable according to ASV and ranked third in stability according to GSI. Based on the study's findings, the GGE biplot genotype view for grain yield identified Tay genotype (G6) to be the most ideal genotype due to its high grain yield and stability in diverse environments. G7 showed similar characteristics and was also stable. These findings provide valuable insights to breeders and researchers for selecting high-yielding and stable, as well as high-yielding specifically adapted genotypes.

Keywords

References

  1. Heliyon. 2019 Mar 29;5(3):e01448 [PMID: 30976707]
  2. Glob Food Sec. 2017 Mar;12:31-37 [PMID: 28580238]
  3. Food Sci Nutr. 2022 Aug 17;10(12):4308-4318 [PMID: 36514761]
  4. Heliyon. 2024 Mar 29;10(7):e28764 [PMID: 38601567]
  5. Theor Appl Genet. 2021 Jun;134(6):1613-1623 [PMID: 33221941]
  6. Sci Rep. 2023 Jun 20;13(1):10019 [PMID: 37340073]
  7. Pak J Biol Sci. 2008 Jul 15;11(14):1791-6 [PMID: 18817218]
  8. BMC Plant Biol. 2023 Apr 17;23(1):198 [PMID: 37062826]
  9. Heliyon. 2023 Oct 31;9(11):e21656 [PMID: 38034689]
  10. Plants (Basel). 2022 Nov 02;11(21): [PMID: 36365406]
  11. Plant Sci. 2020 Jun;295:110396 [PMID: 32534615]
  12. BMC Genomics. 2021 Jan 2;22(1):2 [PMID: 33388036]
  13. Theor Appl Genet. 1996 Jul;93(1-2):30-7 [PMID: 24162195]
  14. Front Plant Sci. 2022 Oct 17;13:974795 [PMID: 36325542]
  15. Plants (Basel). 2023 May 23;12(11): [PMID: 37299058]
  16. PLoS One. 2012;7(9):e45997 [PMID: 23049918]
  17. Plants (Basel). 2022 Oct 19;11(20): [PMID: 36297799]
  18. Food Sci Nutr. 2023 Jun 24;11(10):5928-5937 [PMID: 37823119]
  19. Saudi J Biol Sci. 2021 Oct;28(10):5714-5719 [PMID: 34588882]
  20. Heliyon. 2021 Jun 03;7(6):e07206 [PMID: 34179527]
  21. Sci Rep. 2021 Nov 23;11(1):22791 [PMID: 34815427]
  22. Front Plant Sci. 2023 Oct 30;14:1261323 [PMID: 37965005]
  23. Front Plant Sci. 2021 Sep 16;12:724517 [PMID: 34603352]
  24. Life (Basel). 2022 Nov 03;12(11): [PMID: 36362928]
  25. Sci Rep. 2015 Oct 22;5:15505 [PMID: 26489689]
  26. PLoS One. 2021 Oct 5;16(10):e0258211 [PMID: 34610051]
  27. Plants (Basel). 2023 Oct 26;12(21): [PMID: 37960048]
  28. Front Genet. 2023 Jan 05;13:1090994 [PMID: 36685981]
  29. Heliyon. 2021 Mar 31;7(3):e06614 [PMID: 33869850]
  30. Sci Rep. 2024 Jan 29;14(1):2402 [PMID: 38287162]
  31. Theor Appl Genet. 2019 Mar;132(3):627-645 [PMID: 30824972]
  32. Front Plant Sci. 2023 Jan 20;13:997429 [PMID: 36743535]
  33. Sci Rep. 2024 Feb 5;14(1):2943 [PMID: 38316821]
  34. Sci Rep. 2024 Jan 19;14(1):1698 [PMID: 38242885]
  35. Heliyon. 2023 Sep 15;9(9):e20203 [PMID: 37809946]
  36. Front Genet. 2023 Jan 17;13:1008024 [PMID: 36733942]
  37. Plants (Basel). 2022 Sep 07;11(18): [PMID: 36145737]
  38. Psychometrika. 1968 Mar;33(1):73-115 [PMID: 5239571]
  39. Sci Rep. 2023 Nov 1;13(1):18800 [PMID: 37914756]
  40. Heliyon. 2024 Feb 07;10(4):e25114 [PMID: 38370242]
  41. Crop Sci. 2018 Sep-Oct;58(5):1890-1898 [PMID: 33343013]
  42. Sci Rep. 2020 Oct 28;10(1):18532 [PMID: 33116201]
  43. Heliyon. 2020 Oct 20;6(10):e05295 [PMID: 33117902]
  44. Front Plant Sci. 2021 May 17;12:656158 [PMID: 34079568]
  45. Plants (Basel). 2022 Feb 02;11(3): [PMID: 35161396]
  46. Heliyon. 2023 Feb 08;9(2):e13515 [PMID: 36873144]
  47. Sci Rep. 2024 Jan 3;13(1):23111 [PMID: 38172529]
  48. Sci Rep. 2021 Sep 20;11(1):18649 [PMID: 34545116]
  49. Bioinformatics. 2016 Jan 1;32(1):58-66 [PMID: 26363027]
  50. Sci Rep. 2022 Dec 3;12(1):20909 [PMID: 36463268]
  51. Crop Sci. 2002 Jan;42(1):11-20 [PMID: 11756248]
  52. Heliyon. 2024 Feb 20;10(5):e26528 [PMID: 38434414]
  53. Front Plant Sci. 2022 Nov 23;13:950992 [PMID: 36507436]
  54. Heliyon. 2022 Feb 24;8(3):e09013 [PMID: 35309407]
  55. Plants (Basel). 2023 Jun 29;12(13): [PMID: 37447051]
  56. Heliyon. 2023 Nov 02;9(11):e21659 [PMID: 38027824]
  57. Sci Rep. 2018 May 29;8(1):8242 [PMID: 29844453]
  58. Front Plant Sci. 2023 Oct 30;14:1282221 [PMID: 37965017]
  59. Heliyon. 2024 Feb 28;10(5):e26918 [PMID: 38463900]
  60. Plants (Basel). 2023 Aug 25;12(17): [PMID: 37687311]
  61. Front Genet. 2022 Aug 04;13:876763 [PMID: 35991560]
  62. Food Sci Nutr. 2020 May 06;8(7):3327-3334 [PMID: 32724597]
  63. BMC Plant Biol. 2020 Apr 17;20(1):171 [PMID: 32303179]
  64. J Appl Genet. 2019 May;60(2):127-135 [PMID: 30877656]
  65. Theor Appl Genet. 1988 Jul;76(1):1-10 [PMID: 24231975]
  66. Scientifica (Cairo). 2021 Mar 25;2021:5576691 [PMID: 33833893]
  67. G3 (Bethesda). 2022 Mar 4;12(3): [PMID: 35134181]
  68. Plant Environ Interact. 2023 Jan 02;4(1):2-10 [PMID: 37284600]
  69. Heliyon. 2023 Oct 06;9(10):e20720 [PMID: 37860519]
  70. Plants (Basel). 2023 Jul 06;12(13): [PMID: 37447122]
  71. Plant Cell. 2022 Jul 4;34(7):2549-2567 [PMID: 35512194]

Word Cloud

Created with Highcharts 10.0.0genotypesgenotypeyieldstabilityGGEAMMIinteractionanalysisgrainbiplotG7stablewheatG6high-yieldingGEIthreeenvironmentshighenvironmentidentifiedBreadcropenvironmental12breadacrossusingbiplotsalsoinsightsdiverseselectedG5viewE3idealASVGSIaccordingfindingsGenotype-by-environmentvitalstapleworldwideincludingEthiopiaproductionpronevariousconstraintsreductionassociatedadaptationidentifyadaptabletotalG1G12evaluatedgenotype-environmentdifferenttwoyearsAdditiveMainEffectMultiplicativeInteractionmaineffectplusgenotype-by-environmentcommonphenomenonimprovementsignificantimportanceassessmentrecommendationAccordingcombinedvarianceconsiderablyimpactedprovidedperformanceconditionsAmongadaptivedemonstratedminimalevidencedIPCA1valuesbiplot'spolygonrevealedhighestobtainedtopvalueG10determinedGenotypeSelectionIndexEventhoughyielderfoundunstablerankedthirdBasedstudy'sTaydueshowedsimilarcharacteristicsprovidevaluablebreedersresearchersselectingwellspecificallyadaptedLanalysesGrainStability

Similar Articles

Cited By