Production of the siderophore lysochelin in rich media through maltose-promoted high-density growth of sp. 3655.

Fang Zhang, Jia Liu, Lin Jiang, Yongbiao Zheng, Lingjun Yu, Liangcheng Du
Author Information
  1. Fang Zhang: School of Life Sciences, Fujian Normal University, Fuzhou, Fujian, China.
  2. Jia Liu: School of Life Sciences, Fujian Normal University, Fuzhou, Fujian, China.
  3. Lin Jiang: School of Life Sciences, Fujian Normal University, Fuzhou, Fujian, China.
  4. Yongbiao Zheng: School of Life Sciences, Fujian Normal University, Fuzhou, Fujian, China.
  5. Lingjun Yu: School of Life Sciences, Fujian Normal University, Fuzhou, Fujian, China.
  6. Liangcheng Du: Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, United States.

Abstract

Siderophores are produced by bacteria in iron-restricted conditions. However, we found maltose could induce the biosynthesis of the siderophore lysochelin in sp. 3655 in rich media that are not compatible with siderophore production. Maltose markedly promoted cell growth, with over 300% increase in cell density (OD) when LB medium was added with maltose (LBM). While lysochelin was not detectable when OD in LBM was below 5.0, the siderophore was clearly produced when OD reached 7.5 and dramatically increased when OD was 15.0. Coincidently, the transcription of lysochelin biosynthesis genes was remarkably enhanced following the increase of OD. Conversely, the iron concentration in the cell culture dropped to 1.2 ��M when OD reached 15.0, which was 6-fold lower than that in the starting medium. Moreover, mutants of the maltose-utilizing genes ( and ) or quorum-sensing related gene significantly lowered the lysochelin yield. Transcriptomics analysis showed that the iron-utilizing/up-taking genes were up-regulated under high cell density. Accordingly, the transcription of lysochelin biosynthetic genes and the yield of lysochelin were stimulated when the iron-utilizing/up-taking genes were deleted. Finally, lysochelin biosynthesis was positively regulated by a TetR regulator (ORF3043). The lysochelin yield in mutant decreased to 50% of that in the wild type and then restored in the complementary strain. Together, this study revealed a previously unrecognized mechanism for lysochelin biosynthetic regulation, by which the siderophore could still be massively produced in even grown in a rich culture medium. This finding could find new applications in large-scale production of siderophores in bacteria.

Keywords

References

  1. Nat Commun. 2017 Aug 10;8(1):230 [PMID: 28794499]
  2. Environ Microbiol. 2020 Apr;22(4):1447-1466 [PMID: 32011068]
  3. Microbiol Mol Biol Rev. 2007 Sep;71(3):413-51 [PMID: 17804665]
  4. J Bacteriol. 2018 Jun 11;200(13): [PMID: 29686142]
  5. Methods Mol Biol. 2014;1149:293-301 [PMID: 24818914]
  6. J Biol Chem. 2021 Jan-Jun;296:100673 [PMID: 33865858]
  7. ACS Cent Sci. 2023 Nov 10;9(11):2138-2149 [PMID: 38033789]
  8. Int J Med Microbiol. 2006 Dec;296(8):513-20 [PMID: 17008127]
  9. Immunogenetics. 2014 Nov;66(11):651-61 [PMID: 25142446]
  10. Appl Environ Microbiol. 1987 Oct;53(10):2388-93 [PMID: 2827569]
  11. AMB Express. 2019 May 28;9(1):78 [PMID: 31139942]
  12. Nat Commun. 2014 Sep 15;5:4910 [PMID: 25222563]
  13. J Microbiol Biotechnol. 2017 Aug 28;27(8):1500-1512 [PMID: 28633518]
  14. Curr Med Chem. 2015;22(2):165-86 [PMID: 25312210]
  15. Appl Environ Microbiol. 2015 Oct 09;82(1):27-39 [PMID: 26452553]
  16. FEMS Microbiol Lett. 1998 Sep 15;166(2):341-5 [PMID: 9770291]
  17. mBio. 2022 Jan 18;13(1):e0362121 [PMID: 35038896]
  18. J Bacteriol. 1994 Jan;176(2):269-75 [PMID: 8288518]
  19. J Bacteriol. 2020 Jun 25;202(14): [PMID: 32366593]
  20. Nat Prod Rep. 2022 Apr 20;39(4):842-874 [PMID: 35067688]
  21. Crit Rev Biochem Mol Biol. 2017 Jun;52(3):314-326 [PMID: 28276700]
  22. mBio. 2015 Dec 15;6(6):e01947-15 [PMID: 26670385]
  23. Appl Biochem Biotechnol. 2014 Jan;172(1):549-60 [PMID: 24101562]
  24. Appl Microbiol Biotechnol. 1990 Feb;32(5):505-10 [PMID: 1367428]
  25. Appl Environ Microbiol. 2013 Nov;79(21):6604-16 [PMID: 23974132]
  26. Appl Environ Microbiol. 2012 Jul;78(13):4561-70 [PMID: 22522683]
  27. Biochim Biophys Acta. 2012 Mar;1820(3):244-55 [PMID: 21693173]
  28. Curr Opin Chem Biol. 2009 Apr;13(2):205-15 [PMID: 19369113]
  29. Proc Natl Acad Sci U S A. 2018 Jul 17;115(29):7581-7586 [PMID: 29954861]
  30. Appl Microbiol Biotechnol. 2005 Mar;66(6):689-95 [PMID: 15290134]
  31. J Appl Microbiol. 2018 Jan;124(1):15-27 [PMID: 28992371]
  32. Metallomics. 2018 Aug 15;10(8):1038-1052 [PMID: 30019043]
  33. Nat Prod Rep. 2010 May;27(5):637-57 [PMID: 20376388]
  34. Microbiology (Reading). 2001 Jun;147(Pt 6):1565-1573 [PMID: 11390687]
  35. mBio. 2024 Feb 14;15(2):e0027723 [PMID: 38236035]
  36. Plants (Basel). 2022 Nov 12;11(22): [PMID: 36432794]
  37. Front Cell Infect Microbiol. 2017 May 31;7:207 [PMID: 28620585]
  38. mSystems. 2024 Apr 16;9(4):e0139723 [PMID: 38501880]
  39. ACS Chem Biol. 2021 Jun 18;16(6):1079-1089 [PMID: 34032403]
  40. Annu Rev Microbiol. 2004;58:611-47 [PMID: 15487950]
  41. J Agric Food Chem. 2023 May 17;71(19):7418-7426 [PMID: 37158236]
  42. Appl Environ Microbiol. 2001 Oct;67(10):4546-53 [PMID: 11571154]
  43. Methods. 2001 Dec;25(4):402-8 [PMID: 11846609]
  44. Appl Biochem Biotechnol. 2021 Mar;193(3):607-618 [PMID: 32500426]
  45. BMC Genom Data. 2022 Jul 22;23(1):55 [PMID: 35869435]
  46. Nucleic Acids Res. 1997 Sep 1;25(17):3389-402 [PMID: 9254694]
  47. J Appl Microbiol. 2005;98(4):806-13 [PMID: 15752325]
  48. Front Microbiol. 2022 Jul 11;13:898979 [PMID: 35898908]
  49. J Biol Chem. 2022 Jun;298(6):102027 [PMID: 35568198]
  50. Front Microbiol. 2022 Apr 18;13:892485 [PMID: 35509312]
  51. Crit Rev Microbiol. 1988;16(2):81-111 [PMID: 3067977]
  52. Environ Microbiol. 2002 Feb;4(2):81-8 [PMID: 11972617]
  53. Microbiol Mol Biol Rev. 1998 Mar;62(1):204-29 [PMID: 9529892]

Word Cloud

Created with Highcharts 10.0.0lysochelinsiderophoreODgenesbiosynthesiscellproducedrichmedium0yieldbacteriamaltosesp3655mediaproductiongrowthincreasedensityLBM5reached15transcriptioncultureiron-utilizing/up-takingbiosyntheticregulationSiderophoresiron-restrictedconditionsHoweverfoundinducecompatibleMaltosemarkedlypromoted300%LBaddeddetectableclearly7dramaticallyincreasedCoincidentlyremarkablyenhancedfollowingConverselyironconcentrationdropped12��M6-foldlowerstartingMoreovermutantsmaltose-utilizingquorum-sensingrelatedgenesignificantlyloweredTranscriptomicsanalysisshowedup-regulatedhighAccordinglystimulateddeletedFinallypositivelyregulatedTetRregulatorORF3043mutantdecreased50%wildtyperestoredcomplementarystrainTogetherstudyrevealedpreviouslyunrecognizedmechanismstillmassivelyevengrownfindingfindnewapplicationslarge-scalesiderophoresProductionmaltose-promotedhigh-densityLysobacter

Similar Articles

Cited By