Molecular epizootiology of porcine reproductive and respiratory syndrome virus in the Xinjiang Uygur Autonomous Region of China.

Junhui Li, Wenjie Gong, Liping Mao, Xiaomei Pan, Qingqing Wu, Yidi Guo, Jianfeng Jiang, Huifen Tang, Yi Zhao, Lanling Cheng, Changchun Tu, Xinglong Yu, Sun He, Wei Zhang
Author Information
  1. Junhui Li: College of Veterinary Medicine, Hunan Agricultural University, Changsha, China.
  2. Wenjie Gong: College of Veterinary Medicine, Jilin University, Changchun, China.
  3. Liping Mao: Tecon Bio-Pharmaceuticals Co. Ltd., Urumqi, China.
  4. Xiaomei Pan: Tecon Bio-Pharmaceuticals Co. Ltd., Urumqi, China.
  5. Qingqing Wu: College of Veterinary Medicine, Jilin University, Changchun, China.
  6. Yidi Guo: College of Veterinary Medicine, Jilin University, Changchun, China.
  7. Jianfeng Jiang: College of Veterinary Medicine, Jilin University, Changchun, China.
  8. Huifen Tang: Tecon Bio-Pharmaceuticals Co. Ltd., Urumqi, China.
  9. Yi Zhao: Tecon Bio-Pharmaceuticals Co. Ltd., Urumqi, China.
  10. Lanling Cheng: Tecon Bio-Pharmaceuticals Co. Ltd., Urumqi, China.
  11. Changchun Tu: Changchun Research Veterinary Institute, Chinese Academy of Agricultural Sciences, Changchun, China.
  12. Xinglong Yu: College of Veterinary Medicine, Hunan Agricultural University, Changsha, China.
  13. Sun He: Tecon Bio-Pharmaceuticals Co. Ltd., Urumqi, China.
  14. Wei Zhang: Tecon Bio-Pharmaceuticals Co. Ltd., Urumqi, China.

Abstract

Rapid evolution of (PRRSV) is the bottleneck for effective prevention and control of PRRS. Thus, understanding the prevalence and genetic background of PRRSV strains in swine-producing regions is important for disease prevention and control. However, there is only limited information about the epizootiological situation of PRRS in the Xinjiang Uygur Autonomous Region, China. In this study, blood or lung tissue samples were collected from 1,411 PRRS-suspected weaned pigs from 9 pig farms in Changji, Shihezi, and Wujiaqu cities between 2020 and 2022. The samples were first tested by RT-quantitative PCR, yielding a PRRSV-2 positive rate of 53.6%. Subsequently, 36 PRRSV strains were isolated through initial adaptation in bone marrow-derived macrophages followed by propagation in grivet monkey Marc-145 cells. Furthermore, 28 PRRSV-positive samples and 20 cell-adapted viruses were selected for high-throughput sequencing (HTS) to obtain the entire PRRSV genome sequences. Phylogenetic analysis based on the nucleotide sequences of the ORF5 gene of the PRRSV strains identified in this study grouped into sub-lineages 1.8 and 8.7 the former being the dominant strain currently circulating in Xinjiang. However, the NSP2 proteins of the Xinjiang PRRSV strains shared the same deletion patterns as sub-lineage 1.8 prototype strain NADC30 with the exception of 4 strains carrying 2-3 additional amino acid deletions. Further analysis confirmed that recombination events had occurred in 27 of 37 PRRSVs obtained here with the parental strains belonging to sub-lineages 1.8 and 8.7, lineages 3 and 5, with the recombination events having occurred most frequently in the 5' and 3' termini of ORF1a and 5' terminus of ORF1b.

Keywords

References

  1. Vet Q. 1991 Jul;13(3):121-30 [PMID: 1835211]
  2. Virology. 2018 Jan 1;513:168-179 [PMID: 29096159]
  3. Virus Res. 2012 Oct;169(1):212-21 [PMID: 23073232]
  4. J Gen Virol. 2021 Aug;102(8): [PMID: 34356005]
  5. J Am Vet Med Assoc. 2005 Aug 1;227(3):385-92 [PMID: 16121604]
  6. J Virol. 1996 Oct;70(10):6625-33 [PMID: 8794297]
  7. Vet Microbiol. 2017 Oct;210:162-166 [PMID: 29103686]
  8. Vet Microbiol. 2016 Dec 25;197:93-101 [PMID: 27938690]
  9. Mol Biol Evol. 2016 Jul;33(7):1870-4 [PMID: 27004904]
  10. Virus Res. 2010 Dec;154(1-2):7-17 [PMID: 20837072]
  11. Transbound Emerg Dis. 2016 Oct;63(5):e441-6 [PMID: 25620455]
  12. J Virol. 2022 Sep 14;96(17):e0078222 [PMID: 36005760]
  13. Transbound Emerg Dis. 2018 Aug;65(4):1078-1086 [PMID: 29520988]
  14. Emerg Infect Dis. 2007 Sep;13(9):1434-6 [PMID: 18252136]
  15. Infect Genet Evol. 2017 Apr;49:12-13 [PMID: 28017914]
  16. Arch Virol. 1997;142(3):629-33 [PMID: 9349308]
  17. PLoS One. 2007 Jun 13;2(6):e526 [PMID: 17565379]
  18. Virol J. 2017 Jul 24;14(1):139 [PMID: 28738888]
  19. Virus Evol. 2015 May 26;1(1):vev003 [PMID: 27774277]
  20. J Clin Microbiol. 1993 Dec;31(12):3184-9 [PMID: 7508455]
  21. J Vet Diagn Invest. 1992 Apr;4(2):117-26 [PMID: 1616975]
  22. Emerg Infect Dis. 2015 Dec;21(12):2256-7 [PMID: 26584305]
  23. Transbound Emerg Dis. 2020 Jul;67(4):1730-1738 [PMID: 32037673]
  24. J Virol. 2020 Feb 28;94(6): [PMID: 31896589]
  25. Microb Pathog. 2014 Oct;75:7-15 [PMID: 25131748]
  26. Transbound Emerg Dis. 2021 Mar;68(2):216-219 [PMID: 33119963]
  27. Microb Pathog. 2020 Mar;140:103941 [PMID: 31862391]
  28. Virology. 1995 Jan 10;206(1):155-63 [PMID: 7831770]

Word Cloud

Created with Highcharts 10.0.0PRRSVstrainsXinjiang81samplesrecombinationpreventioncontrolPRRSgeneticHoweverUygurAutonomousRegionChinastudysequencesanalysissub-lineages7straineventsoccurred5'epizootiologyRapidevolutionbottleneckeffectiveThusunderstandingprevalencebackgroundswine-producingregionsimportantdiseaselimitedinformationepizootiologicalsituationbloodlungtissuecollected411PRRS-suspectedweanedpigs9pigfarmsChangjiShiheziWujiaqucities20202022firsttestedRT-quantitativePCRyieldingPRRSV-2positiverate536%Subsequently36isolatedinitialadaptationbonemarrow-derivedmacrophagesfollowedpropagationgrivetmonkeyMarc-145cellsFurthermore28PRRSV-positive20cell-adaptedvirusesselectedhigh-throughputsequencingHTSobtainentiregenomePhylogeneticbasednucleotideORF5geneidentifiedgroupedformerdominantcurrentlycirculatingNSP2proteinsshareddeletionpatternssub-lineageprototypeNADC30exception4carrying2-3additionalaminoaciddeletionsconfirmed2737PRRSVsobtainedparentalbelonginglineages35frequently3'terminiORF1aterminusORF1bMolecularporcinereproductiverespiratorysyndromevirusdiversitymolecular

Similar Articles

Cited By