Biparental graph strategy to represent and analyze hybrid plant genomes.

Qianqian Kong, Yi Jiang, Mingfei Sun, Yunpeng Wang, Lin Zhang, Xing Zeng, Zhiheng Wang, Zijie Wang, Yuting Liu, Yuanxian Gan, Han Liu, Xiang Gao, Xuerong Yang, Xinyuan Song, Hongjun Liu, Junpeng Shi
Author Information
  1. Qianqian Kong: School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China.
  2. Yi Jiang: School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China.
  3. Mingfei Sun: Modern Crop Biotechnology Research and Application Laboratory, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China. ORCID
  4. Yunpeng Wang: Jilin Provincial Crop Transgenic Science and Technology Innovation Center, Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun 130033, China. ORCID
  5. Lin Zhang: College of Agriculture, Northeast Agricultural University, Changjiang Road, Xiangfang District, Harbin 150030, China.
  6. Xing Zeng: College of Agriculture, Northeast Agricultural University, Changjiang Road, Xiangfang District, Harbin 150030, China.
  7. Zhiheng Wang: School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China.
  8. Zijie Wang: School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China. ORCID
  9. Yuting Liu: School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China.
  10. Yuanxian Gan: School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China.
  11. Han Liu: College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China. ORCID
  12. Xiang Gao: School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China.
  13. Xuerong Yang: Modern Crop Biotechnology Research and Application Laboratory, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China. ORCID
  14. Xinyuan Song: Jilin Provincial Crop Transgenic Science and Technology Innovation Center, Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun 130033, China.
  15. Hongjun Liu: Modern Crop Biotechnology Research and Application Laboratory, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China. ORCID
  16. Junpeng Shi: School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China. ORCID

Abstract

Hybrid plants are found extensively in the wild, and they often demonstrate superior performance of complex traits over their parents and other selfing plants. This phenomenon, known as heterosis, has been extensively applied in plant breeding for decades. However, the process of decoding hybrid plant genomes has seriously lagged due to the challenges associated with genome assembly and the lack of appropriate methodologies for their subsequent representation and analysis. Here, we present the assembly and analysis of 2 hybrids, an intraspecific hybrid between 2 maize (Zea mays ssp. mays) inbred lines and an interspecific hybrid between maize and its wild relative teosinte (Z. mays ssp. parviglumis), utilizing a combination of PacBio High Fidelity sequencing and chromatin conformation capture sequencing data. The haplotypic assemblies are well phased at chromosomal scale, successfully resolving the complex loci with extensive parental structural variations (SVs). By integrating into a biparental genome graph, the haplotypic assemblies can facilitate downstream short-read-based SV calling and allele-specific gene expression analysis, demonstrating outstanding advantages over a single linear genome. Our work offers a comprehensive workflow that aims to facilitate the decoding of numerous hybrid plant genomes, particularly those with unknown or inaccessible parentage, thereby enhancing our understanding of genome evolution and heterosis.

References

  1. Plant Physiol. 2018 Feb;176(2):1410-1422 [PMID: 29233850]
  2. Proc Natl Acad Sci U S A. 2016 May 3;113(18):4964-9 [PMID: 27092004]
  3. Sci Rep. 2017 Jul 20;7(1):5954 [PMID: 28729714]
  4. Plant J. 2022 Dec;112(5):1194-1211 [PMID: 36219505]
  5. Nat Biotechnol. 2018 Oct 22;: [PMID: 30346939]
  6. Plant J. 2018 Feb;93(3):445-459 [PMID: 29172230]
  7. Nat Biotechnol. 2022 Sep;40(9):1332-1335 [PMID: 35332338]
  8. Genome Biol. 2011;12(3):R25 [PMID: 21418647]
  9. Genome Res. 2014 Jan;24(1):167-76 [PMID: 24131563]
  10. GigaByte. 2022 Jun 14;2022:gigabyte63 [PMID: 36824505]
  11. Nat Genet. 2023 Feb;55(2):312-323 [PMID: 36646891]
  12. Mol Plant. 2023 Jan 2;16(1):168-186 [PMID: 36523157]
  13. Mitochondrial DNA B Resour. 2021 Feb 8;6(2):395-396 [PMID: 33659690]
  14. Nat Genet. 2021 Aug;53(8):1250-1259 [PMID: 34267370]
  15. Genome Res. 2020 Sep;30(9):1291-1305 [PMID: 32801147]
  16. Science. 2021 Aug 6;373(6555):655-662 [PMID: 34353948]
  17. Nat Genet. 2018 Sep;50(9):1289-1295 [PMID: 30061735]
  18. Nat Biotechnol. 2023 Oct;41(10):1474-1482 [PMID: 36797493]
  19. Bioinformatics. 2021 Apr 1;36(22-23):5519-5521 [PMID: 33346817]
  20. Nat Methods. 2018 Jun;15(6):461-468 [PMID: 29713083]
  21. Mol Plant. 2021 Oct 4;14(10):1757-1767 [PMID: 34171480]
  22. Mol Plant. 2023 Jan 2;16(1):145-167 [PMID: 36495013]
  23. Nat Genet. 2022 Jan;54(1):73-83 [PMID: 34980919]
  24. Nat Ecol Evol. 2019 Feb;3(2):170-177 [PMID: 30697003]
  25. Genes (Basel). 2019 Jan 18;10(1): [PMID: 30669388]
  26. Plant Genome. 2019 Jun;12(2): [PMID: 31290926]
  27. Bioinformatics. 2021 Dec 7;37(23):4572-4574 [PMID: 34623391]
  28. Nat Biotechnol. 2019 Aug;37(8):907-915 [PMID: 31375807]
  29. Genome Biol. 2020 Sep 14;21(1):245 [PMID: 32928274]
  30. Philos Trans R Soc Lond B Biol Sci. 2022 Jul 18;377(1855):20200510 [PMID: 35634918]
  31. Sci Data. 2020 Nov 17;7(1):399 [PMID: 33203859]
  32. Mol Biol Evol. 2021 Sep 27;38(10):4647-4654 [PMID: 34320186]
  33. Nat Genet. 2020 Oct;52(10):1018-1023 [PMID: 32989320]
  34. Nature. 2021 Apr;592(7856):737-746 [PMID: 33911273]
  35. Methods. 2012 Nov;58(3):268-76 [PMID: 22652625]
  36. Nat Rev Genet. 2024 Sep;25(9):658-670 [PMID: 38649458]
  37. Genome Biol. 2022 Dec 15;23(1):258 [PMID: 36522651]
  38. Nat Biotechnol. 2019 Oct;37(10):1155-1162 [PMID: 31406327]
  39. Nat Biotechnol. 2018 Oct;36(9):875-879 [PMID: 30125266]
  40. Database (Oxford). 2014 Jun 18;2014: [PMID: 24948510]
  41. Nucleic Acids Res. 2019 Jan 8;47(D1):D1146-D1154 [PMID: 30407532]
  42. Genome Biol. 2020 May 20;21(1):121 [PMID: 32434565]
  43. Nat Genet. 2024 Mar;56(3):505-516 [PMID: 38347217]
  44. Nat Genet. 2023 Jul;55(7):1221-1231 [PMID: 37322109]
  45. Nature. 2016 Sep 29;537(7622):629-633 [PMID: 27602511]
  46. Science. 2009 Aug 7;325(5941):714-8 [PMID: 19661422]
  47. Nature. 2022 Dec;612(7939):292-300 [PMID: 36385527]
  48. Curr Protoc Bioinformatics. 2009 Mar;Chapter 4:4.10.1-4.10.14 [PMID: 19274634]
  49. Genome Biol. 2020 Aug 3;21(1):189 [PMID: 32746918]
  50. Nat Methods. 2021 Feb;18(2):170-175 [PMID: 33526886]
  51. Nat Biotechnol. 2024 Apr;42(4):663-673 [PMID: 37165083]
  52. Proc Biol Sci. 2013 Jun 07;280(1760):20130133 [PMID: 23595268]
  53. Plant Commun. 2024 Apr 8;5(4):100786 [PMID: 38155575]
  54. PLoS Comput Biol. 2018 Jan 26;14(1):e1005944 [PMID: 29373581]
  55. Bioinformatics. 2020 May 1;36(9):2896-2898 [PMID: 31971576]
  56. Plant J. 2018 Mar;93(5):843-855 [PMID: 29265526]
  57. Bioinformatics. 2016 Oct 1;32(19):3021-3 [PMID: 27318204]
  58. J Evol Biol. 2013 Feb;26(2):229-46 [PMID: 23323997]

Grants

  1. 2022B0202060005/Guangdong Provincial Key R&D Program Project
  2. 32172014/National Natural Science Foundation of China
  3. 2021QNRC001/Young Elite Scientists Sponsorship Program by CAST
  4. /Fundamental Research Funds for the Central Universities
  5. 23lgbj016/Sun Yat-sen University
  6. SZBH202110/Research Funding for Outbound Pos-doctors in Shenzhen
  7. 2023ZD04068/Science and Technology Innovation 2030- Major Project

MeSH Term

Genome, Plant
Zea mays
Hybridization, Genetic
Hybrid Vigor
Plant Breeding

Word Cloud

Created with Highcharts 10.0.0hybridplantgenomegenomesanalysismaysplantsextensivelywildcomplexheterosisdecodingassembly2maizesspsequencinghaplotypicassembliesgraphfacilitateHybridfoundoftendemonstratesuperiorperformancetraitsparentsselfingphenomenonknownappliedbreedingdecadesHoweverprocessseriouslylaggedduechallengesassociatedlackappropriatemethodologiessubsequentrepresentationpresenthybridsintraspecificZeainbredlinesinterspecificrelativeteosinteZparviglumisutilizingcombinationPacBioHighFidelitychromatinconformationcapturedatawellphasedchromosomalscalesuccessfullyresolvinglociextensiveparentalstructuralvariationsSVsintegratingbiparentalcandownstreamshort-read-basedSVcallingallele-specificgeneexpressiondemonstratingoutstandingadvantagessinglelinearworkofferscomprehensiveworkflowaimsnumerousparticularlyunknowninaccessibleparentagetherebyenhancingunderstandingevolutionBiparentalstrategyrepresentanalyze

Similar Articles

Cited By