Mesenchymal stem cell-derived extracellular vesicles accelerate diabetic wound healing by inhibiting NET-induced ferroptosis of endothelial cells.

Wei Lu, Xiaoyang Li, Zheyu Wang, Changbo Zhao, Qi Li, Lei Zhang, Shuofei Yang
Author Information
  1. Wei Lu: Department of Vascular Surgery, The Quzhou Affliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, No. 100 Minjiang Avenue, Quzhou 324000, China.
  2. Xiaoyang Li: Department of Vascular Surgery, The Quzhou Affliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, No. 100 Minjiang Avenue, Quzhou 324000, China.
  3. Zheyu Wang: Department of Vascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Pujian Road 160, Shanghai 200127, China.
  4. Changbo Zhao: Department of Vascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Pujian Road 160, Shanghai 200127, China.
  5. Qi Li: Department of Vascular Surgery, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Ganhe Road 110, Shanghai 200437, PR China.
  6. Lei Zhang: Department of Vascular Surgery, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Ganhe Road 110, Shanghai 200437, PR China.
  7. Shuofei Yang: Department of Vascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Pujian Road 160, Shanghai 200127, China.

Abstract

Impaired angiogenesis is a major factor contributing to delayed wound healing in diabetes. Dysfunctional mitochondria promote the formation of neutrophil extracellular traps (NETs), obstructing angiogenesis during wound healing. Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) have shown promise in promoting tissue repair and regeneration in diabetes; however, the precise pathways involved in this process remain unclear. In this study, NET-induced ferroptosis of endothelial cells (ECs) and angiogenesis were assessed in diabetic wound samples from both patients and animal models. and experiments were performed to examine the regulatory mechanisms of NETs in ECs using specific inhibitors and gene-knockout mice. MSC-EVs encapsulating dysfunctional mitochondria were used to trigger mitochondrial fusion and restore mitochondrial function in neutrophils to suppress NET formation. Angiogenesis in wound tissue was evaluated using color laser Doppler imaging and vascular density analysis. Wound healing was evaluated via macroscopic analysis and histological evaluation of the epithelial gap. NET-induced ferroptosis of ECs was validated as a crucial factor contributing to the impairment of angiogenesis in diabetic wounds. Mechanistically, NETs regulated ferroptosis by suppressing the PI3K/AKT pathway. Furthermore, MSC-EVs transferred functional mitochondria to neutrophils in wound tissue, triggered mitochondrial fusion, and restored mitochondrial function, thereby reducing NET formation. These results suggest that inhibiting NET formation and EC ferroptosis or activating the PI3K/AKT pathway can remarkably improve wound healing. In conclusion, this study reveals a novel NET-mediated pathway involved in wound healing in diabetes and suggests an effective therapeutic strategy for accelerating wound healing.

Keywords

References

  1. Tissue Eng Part B Rev. 2015 Feb;21(1):45-54 [PMID: 24957510]
  2. Eur Respir J. 2021 Jul 1;58(1): [PMID: 33334945]
  3. Nat Rev Rheumatol. 2016 Apr;12(4):195-6 [PMID: 26935279]
  4. J Cell Physiol. 2017 Dec;232(12):3552-3564 [PMID: 28112391]
  5. Biomaterials. 2022 May;284:121486 [PMID: 35447404]
  6. J Clin Invest. 2007 May;117(5):1219-22 [PMID: 17476353]
  7. Cancer Res. 2021 Dec 15;81(24):6233-6245 [PMID: 34711611]
  8. Cancer Res. 1997 May 1;57(9):1735-42 [PMID: 9135017]
  9. Biochim Biophys Acta Mol Basis Dis. 2019 Dec 1;1865(12):165542 [PMID: 31473341]
  10. Diabetes. 2023 Nov 1;72(11):1692-1706 [PMID: 37683051]
  11. Science. 2019 Dec 20;366(6472):1531-1536 [PMID: 31857488]
  12. Cell Death Differ. 2019 Mar;26(3):395-408 [PMID: 30622307]
  13. Cytokine Growth Factor Rev. 2019 Dec;50:52-59 [PMID: 30890300]
  14. Am J Physiol Endocrinol Metab. 2021 Oct 1;321(4):E509-E520 [PMID: 34423682]
  15. Acta Biochim Biophys Sin (Shanghai). 2019 Dec 13;51(12):1233-1241 [PMID: 31768526]
  16. Bioact Mater. 2020 Sep 17;6(3):579-588 [PMID: 33005823]
  17. Front Bioeng Biotechnol. 2020 Mar 03;8:146 [PMID: 32195233]
  18. Adv Sci (Weinh). 2020 Aug 20;7(18):1903746 [PMID: 32999825]
  19. J Mol Med (Berl). 2022 May;100(5):713-722 [PMID: 35441845]
  20. Thorax. 2023 Jun;78(6):617-630 [PMID: 35948417]
  21. Bioact Mater. 2023 Apr 14;27:257-270 [PMID: 37122894]
  22. Nat Med. 2016 Feb;22(2):146-53 [PMID: 26779811]
  23. Free Radic Biol Med. 2016 Apr;93:190-203 [PMID: 26774674]
  24. Mol Immunol. 2017 Jul;87:23-32 [PMID: 28388446]
  25. Cell Tissue Res. 2018 Mar;371(3):531-539 [PMID: 29383445]
  26. Biomed Pharmacother. 2019 Apr;112:108615 [PMID: 30784919]
  27. J Cell Physiol. 2020 Feb;235(2):706-717 [PMID: 31254289]
  28. Nat Commun. 2020 Oct 27;11(1):5424 [PMID: 33110073]
  29. Int J Mol Sci. 2019 Jan 27;20(3): [PMID: 30691207]
  30. Int J Mol Sci. 2021 Mar 05;22(5): [PMID: 33807864]
  31. Arterioscler Thromb Vasc Biol. 2016 Oct;36(10):2078-87 [PMID: 27470511]
  32. Mol Med. 2023 Mar 28;29(1):39 [PMID: 36977984]
  33. J Nanobiotechnology. 2021 May 21;19(1):150 [PMID: 34020670]
  34. Nat Rev Mol Cell Biol. 2021 Apr;22(4):266-282 [PMID: 33495651]
  35. Adv Wound Care (New Rochelle). 2020 Jan 1;9(1):16-27 [PMID: 31871827]
  36. Acta Biomater. 2023 Feb;157:175-186 [PMID: 36503078]
  37. Clin Sci (Lond). 2019 Feb 18;133(4):565-582 [PMID: 30626731]
  38. Nat Med. 2015 Jul;21(7):815-9 [PMID: 26076037]
  39. Immunity. 2022 Aug 9;55(8):1370-1385.e8 [PMID: 35835107]
  40. Biochim Biophys Acta Mol Basis Dis. 2020 May 1;1866(5):165664 [PMID: 31926265]
  41. Cell Death Discov. 2020 Sep 10;6:84 [PMID: 32963812]
  42. Redox Biol. 2023 Nov;67:102906 [PMID: 37812880]
  43. JAMA. 2023 Jul 3;330(1):62-75 [PMID: 37395769]
  44. Biol Chem. 2020 Feb 25;401(3):367-376 [PMID: 31318684]
  45. Diabetes. 2016 Apr;65(4):1061-71 [PMID: 26740598]
  46. Nature. 2020 Jul;583(7814):133-138 [PMID: 32528174]
  47. Cell Prolif. 2021 Mar;54(3):e12993 [PMID: 33458899]
  48. Environ Int. 2023 Oct;180:108237 [PMID: 37802009]
  49. Arterioscler Thromb Vasc Biol. 2019 Sep;39(9):1724-1738 [PMID: 31315434]
  50. Int J Biol Sci. 2023 Jan 1;19(1):347-361 [PMID: 36594092]
  51. Lab Invest. 2016 Jul;96(7):741-51 [PMID: 27111285]
  52. Adv Healthc Mater. 2023 Aug;12(20):e2300019 [PMID: 36999744]
  53. J Exp Med. 2020 Jun 1;217(6): [PMID: 32302401]
  54. Am J Respir Crit Care Med. 2017 Nov 15;196(10):1275-1286 [PMID: 28598224]
  55. Annu Rev Pathol. 2020 Jan 24;15:235-259 [PMID: 31585519]

MeSH Term

Animals
Ferroptosis
Wound Healing
Extracellular Vesicles
Mesenchymal Stem Cells
Mice
Humans
Endothelial Cells
Extracellular Traps
Male
Mice, Inbred C57BL
Neutrophils
Mitochondria
Mice, Knockout
Phosphatidylinositol 3-Kinases

Chemicals

Phosphatidylinositol 3-Kinases

Word Cloud

Created with Highcharts 10.0.0woundhealingferroptosisextracellularmitochondrialangiogenesisformationdiabeticdiabetesmitochondriaNETsstemcell-derivedvesiclesMSC-EVstissueNET-inducedECsfusionNETpathwayfactorcontributingneutrophiltrapsMesenchymalinvolvedstudyendothelialcellsusingfunctionneutrophilsevaluatedanalysisPI3K/AKTinhibitingImpairedmajordelayedDysfunctionalpromoteobstructingshownpromisepromotingrepairregenerationhoweverprecisepathwaysprocessremainunclearassessedsamplespatientsanimalmodelsexperimentsperformedexamineregulatorymechanismsspecificinhibitorsgene-knockoutmiceencapsulatingdysfunctionalusedtriggerrestoresuppressAngiogenesiscolorlaserDopplerimagingvasculardensityWoundviamacroscopichistologicalevaluationepithelialgapvalidatedcrucialimpairmentwoundsMechanisticallyregulatedsuppressingFurthermoretransferredfunctionaltriggeredrestoredtherebyreducingresultssuggestECactivatingcanremarkablyimproveconclusionrevealsnovelNET-mediatedsuggestseffectivetherapeuticstrategyacceleratingacceleratemesenchymal

Similar Articles

Cited By (5)