Expanding the Application of Sentinel-2 Chlorophyll Monitoring across United States Lakes.

Wilson B Salls, Blake A Schaeffer, Nima Pahlevan, Megan M Coffer, Bridget N Seegers, P Jeremy Werdell, Hannah Ferriby, Richard P Stumpf, Caren E Binding, Darryl J Keith
Author Information
  1. Wilson B Salls: U.S. Environmental Protection Agency Office of Research and Development, Research Triangle Park, NC 27711, USA.
  2. Blake A Schaeffer: U.S. Environmental Protection Agency Office of Research and Development, Research Triangle Park, NC 27711, USA.
  3. Nima Pahlevan: NASA Goddard Space Flight Center, Ocean Ecology Lab, Greenbelt, MD 20771, USA.
  4. Megan M Coffer: National Oceanic and Atmospheric Administration, NESDIS Center for Satellite Applications and Research, College Park, MD 20740, USA. ORCID
  5. Bridget N Seegers: NASA Goddard Space Flight Center, Ocean Ecology Lab, Greenbelt, MD 20771, USA.
  6. P Jeremy Werdell: NASA Goddard Space Flight Center, Ocean Ecology Lab, Greenbelt, MD 20771, USA.
  7. Hannah Ferriby: Tetra Tech, Research Triangle Park, NC 27709, USA. ORCID
  8. Richard P Stumpf: National Oceanic and Atmospheric Administration, National Centers for Coastal Ocean Science, Silver Spring, MD 20910, USA. ORCID
  9. Caren E Binding: Environment and Climate Change Canada, Water Science and Technology Directorate, Burlington, ON L7S 1A1, Canada.
  10. Darryl J Keith: U.S. Environmental Protection Agency Office of Research and Development, Narragansett, RI 02882, USA.

Abstract

Eutrophication of inland lakes poses various societal and ecological threats, making water quality monitoring crucial. Satellites provide a comprehensive and cost-effective supplement to traditional in situ sampling. The Sentinel-2 MultiSpectral Instrument (S2 MSI) offers unique spectral bands positioned to quantify Chlorophyll , a water-quality and trophic-state indicator, along with fine spatial resolution, enabling the monitoring of small waterbodies. In this study, two algorithms-the Maximum Chlorophyll Index (MCI) and the Normalized Difference Chlorophyll Index (NDCI)-were applied to S2 MSI data. They were calibrated and validated using in situ Chlorophyll measurements for 103 lakes across the contiguous U.S. Both algorithms were tested using top-of-atmosphere reflectances ( ), Rayleigh-corrected reflectances ( ), and remote sensing reflectances ( ). MCI slightly outperformed NDCI across all reflectance products. MCI using showed the best overall performance, with a mean absolute error factor of 2.08 and a mean bias factor of 1.15. Conversion of derived Chlorophyll to trophic state improved the potential for management applications, with 82% accuracy using a binary classification. We report algorithm-to-Chlorophyll- conversions that show potential for application across the U.S., demonstrating that S2 can serve as a monitoring tool for inland lakes across broad spatial scales.

Keywords

References

  1. Int J Remote Sens. 2018 Jan 29;39(9):2818-2846 [PMID: 29962557]
  2. Freshw Sci. 2018 Jun 01;37:208-221 [PMID: 29963332]
  3. Ecol Appl. 2019 Jan;29(1):e01822 [PMID: 30362295]
  4. Sci Total Environ. 2001 Mar 14;268(1-3):197-214 [PMID: 11315742]
  5. Water Res. 2004 Feb;38(3):517-22 [PMID: 14723919]
  6. Environ Model Softw. 2018;109:93-103 [PMID: 31595145]
  7. Environ Health. 2010 Oct 31;9:66 [PMID: 21040526]
  8. Science. 2009 Feb 20;323(5917):1014-5 [PMID: 19229022]
  9. Sci Total Environ. 2019 Feb 15;651(Pt 1):1-11 [PMID: 30223216]
  10. J Environ Manage. 2017 May 15;193:483-490 [PMID: 28242115]
  11. Sci Total Environ. 2021 Jul 15;778:146271 [PMID: 33721636]
  12. Environ Sci Pollut Res Int. 2021 Jul;28(26):34990-35011 [PMID: 33661492]
  13. Proc Natl Acad Sci U S A. 1935 Sep;21(9):554-9 [PMID: 16577689]
  14. Opt Express. 2018 Mar 19;26(6):7404-7422 [PMID: 29609296]
  15. Int J Environ Res Public Health. 2015 Sep 15;12(9):11560-78 [PMID: 26389930]
  16. Environ Sci Technol. 2009 Jan 1;43(1):12-9 [PMID: 19209578]
  17. Environ Monit Assess. 2018 Sep 29;190(10):620 [PMID: 30269190]
  18. Ecol Indic. 2017 Sep;80:84-95 [PMID: 30245589]
  19. Sci Total Environ. 2003 Aug 1;312(1-3):221-43 [PMID: 12873412]
  20. Remote Sens Environ. 2021 Dec 1;266:1-14 [PMID: 36424983]
  21. Harmful Algae. 2016 Apr;54:160-173 [PMID: 28073474]
  22. Sci Total Environ. 2021 Sep 20;788:147700 [PMID: 34029825]

Grants

  1. EPA999999/Intramural EPA

Word Cloud

Created with Highcharts 10.0.0acrosslakesmonitoringchlorophyllusingSentinel-2S2ChlorophyllMCIreflectancesinlandwaterqualitysituMSIspatialIndexNDCIUSremotesensingmeanfactorpotentialEutrophicationposesvarioussocietalecologicalthreatsmakingcrucialSatellitesprovidecomprehensivecost-effectivesupplementtraditionalsamplingMultiSpectralInstrumentoffersuniquespectralbandspositionedquantifywater-qualitytrophic-stateindicatoralongfineresolutionenablingsmallwaterbodiesstudytwoalgorithms-theMaximumNormalizedDifference-wereapplieddatacalibratedvalidatedmeasurements103contiguousalgorithmstestedtop-of-atmosphereRayleigh-correctedslightlyoutperformedreflectanceproductsshowedbestoverallperformanceabsoluteerror208bias115Conversionderivedtrophicstateimprovedmanagementapplications82%accuracybinaryclassificationreportalgorithm-to-chlorophyll-conversionsshowapplicationdemonstratingcanservetoolbroadscalesExpandingApplicationMonitoringUnitedStatesLakeseutrophication

Similar Articles

Cited By (1)