Clubroot-Induced Changes in the Root and Rhizosphere Microbiome of Susceptible and Resistant Canola.

Jorge Cordero-Elvia, Leonardo Galindo-González, Rudolph Fredua-Agyeman, Sheau-Fang Hwang, Stephen E Strelkov
Author Information
  1. Jorge Cordero-Elvia: Department of Agricultural, Food and Nutritional Sciences, University of Alberta, Edmonton, AB T6G2P5, Canada.
  2. Leonardo Galindo-González: Department of Agricultural, Food and Nutritional Sciences, University of Alberta, Edmonton, AB T6G2P5, Canada.
  3. Rudolph Fredua-Agyeman: Department of Agricultural, Food and Nutritional Sciences, University of Alberta, Edmonton, AB T6G2P5, Canada. ORCID
  4. Sheau-Fang Hwang: Department of Agricultural, Food and Nutritional Sciences, University of Alberta, Edmonton, AB T6G2P5, Canada. ORCID
  5. Stephen E Strelkov: Department of Agricultural, Food and Nutritional Sciences, University of Alberta, Edmonton, AB T6G2P5, Canada. ORCID

Abstract

Clubroot is a soilborne disease of canola () and other crucifers caused by the obligate parasite . In western Canada, clubroot is usually managed by planting-resistant cultivars, but the emergence of resistance-breaking pathotypes of represents a major threat to sustainable canola production. The rhizosphere and root contain beneficial microorganisms that can improve plant health. In this study, we evaluated the effect of two isolates (termed A and B) with different levels of virulence on the root and rhizosphere microbiomes of clubroot-resistant and clubroot-susceptible canola. Additionally, potential biocontrol microorganisms were identified based on taxa antagonistic to clubroot. Although both isolates were classified as pathotype 3A, isolate A caused a higher disease severity index in the resistant canola genotype compared with isolate B. Metabarcoding analysis indicated a shift in the bacterial and fungal communities in response to inoculation with either field isolate. Root endophytic bacterial and fungal communities responded to changes in inoculation, isolate type, sampling time, and canola genotype. In contrast, fungal communities associated with the rhizosphere exhibited significant differences between sampling times, while bacterial communities associated with the rhizosphere exhibited low variability.

Keywords

References

  1. Front Microbiol. 2017 Oct 27;8:2071 [PMID: 29163383]
  2. BMC Microbiol. 2017 Oct 26;17(1):209 [PMID: 29073903]
  3. Science. 2009 May 8;324(5928):742-4 [PMID: 19423812]
  4. Microb Cell Fact. 2020 Sep 9;19(1):179 [PMID: 32907579]
  5. Front Microbiol. 2022 Jul 06;13:922660 [PMID: 35875525]
  6. Appl Environ Microbiol. 2017 Oct 31;83(22): [PMID: 28887416]
  7. J Fungi (Basel). 2022 Jul 26;8(8): [PMID: 35893144]
  8. Microb Biotechnol. 2020 Sep;13(5):1648-1672 [PMID: 32686326]
  9. Microorganisms. 2020 Jul 13;8(7): [PMID: 32668676]
  10. Ecology. 2007 Jun;88(6):1354-64 [PMID: 17601128]
  11. Front Microbiol. 2020 Jan 15;10:3007 [PMID: 32010086]
  12. Appl Environ Microbiol. 2001 Oct;67(10):4742-51 [PMID: 11571180]
  13. Plant Physiol. 2004 Sep;136(1):2887-94 [PMID: 15347793]
  14. Front Microbiol. 2020 Oct 09;11:585404 [PMID: 33162962]
  15. Curr Genet. 2005 Dec;48(6):366-79 [PMID: 16283313]
  16. Can J Microbiol. 2020 Jan;66(1):71-85 [PMID: 31658427]
  17. J Microbiol Methods. 2007 Oct;71(1):7-14 [PMID: 17683818]
  18. ISME J. 2011 Oct;5(10):1571-9 [PMID: 21472016]
  19. Front Plant Sci. 2013 Apr 30;4:120 [PMID: 23641251]
  20. Int J Mol Sci. 2020 Nov 08;21(21): [PMID: 33171675]
  21. Mol Plant Microbe Interact. 2015 Mar;28(3):274-85 [PMID: 25679538]
  22. BMC Microbiol. 2020 Aug 6;20(1):244 [PMID: 32762653]
  23. Environ Microbiome. 2023 May 9;18(1):40 [PMID: 37161618]
  24. Front Microbiol. 2020 Dec 21;11:622926 [PMID: 33408712]
  25. Front Microbiol. 2020 Jan 21;10:3099 [PMID: 32038545]
  26. Appl Environ Microbiol. 2003 Dec;69(12):7310-8 [PMID: 14660380]
  27. Front Microbiol. 2018 Jun 08;9:1188 [PMID: 29937756]
  28. Plant Dis. 2014 Jun;98(6):727-738 [PMID: 30708639]
  29. Microorganisms. 2020 Aug 31;8(9): [PMID: 32878079]
  30. Front Microbiol. 2019 Feb 26;10:302 [PMID: 30873135]
  31. Can J Microbiol. 1996 Mar;42(3):279-83 [PMID: 8868235]
  32. Phytopathology. 2013 Mar;103(3):245-54 [PMID: 23113546]
  33. Mol Plant Microbe Interact. 2006 Oct;19(10):1121-6 [PMID: 17022176]
  34. Front Microbiol. 2021 Jun 18;12:641556 [PMID: 34220735]
  35. Ecol Lett. 2014 Feb;17(2):155-64 [PMID: 24261594]
  36. Adv Virus Res. 2012;84:247-88 [PMID: 22682170]
  37. Fungal Biol. 2018 Sep;122(9):837-846 [PMID: 30115317]
  38. PLoS One. 2017 Oct 24;12(10):e0185907 [PMID: 29065162]
  39. Am J Bot. 2013 Sep;100(9):1738-50 [PMID: 23935113]
  40. Plant Dis. 2012 Jun;96(6):833-838 [PMID: 30727354]
  41. Microb Ecol. 2013 Apr;65(3):593-601 [PMID: 23064947]
  42. Can J Microbiol. 2001 Jul;47(7):642-52 [PMID: 11547884]
  43. Nat Biotechnol. 2018 Oct 08;: [PMID: 30295674]
  44. Appl Environ Microbiol. 2022 May 24;88(10):e0027322 [PMID: 35481756]
  45. Mol Plant. 2020 Oct 5;13(10):1394-1401 [PMID: 32979564]
  46. Mol Plant Pathol. 2012 Feb;13(2):105-13 [PMID: 21726396]
  47. Trends Plant Sci. 2020 Aug;25(8):733-743 [PMID: 32345569]
  48. Annu Rev Plant Biol. 2013;64:807-38 [PMID: 23373698]
  49. Front Microbiol. 2020 Jul 07;11:1216 [PMID: 32733391]
  50. Microb Ecol. 2020 Nov;80(4):762-777 [PMID: 31897569]
  51. Microbes Environ. 2017 Mar 31;32(1):84-87 [PMID: 28228608]
  52. Annu Rev Phytopathol. 2004;42:243-70 [PMID: 15283667]
  53. Annu Rev Phytopathol. 2015;53:97-119 [PMID: 26070330]
  54. Biology (Basel). 2022 Jun 15;11(6): [PMID: 35741438]
  55. Nat Biotechnol. 2019 Aug;37(8):852-857 [PMID: 31341288]
  56. FEMS Microbiol Ecol. 2002 Dec 1;42(3):399-407 [PMID: 19709299]

Grants

  1. 2022N028R/Results Driven Agriculture Research (RDAR)
  2. 2022N028RC/Canadian Agricultural Partnership

Word Cloud

Created with Highcharts 10.0.0canolarhizosphereisolatecommunitiesclubrootrootmicroorganismsbacterialfungaldiseasecausedisolatesBvirulencebiocontrolgenotypeinoculationRootsamplingassociatedexhibitedClubrootsoilbornecrucifersobligateparasitewesternCanadausuallymanagedplanting-resistantcultivarsemergenceresistance-breakingpathotypesrepresentsmajorthreatsustainableproductioncontainbeneficialcanimproveplanthealthstudyevaluatedeffecttwotermeddifferentlevelsmicrobiomesclubroot-resistantclubroot-susceptibleAdditionallypotentialidentifiedbasedtaxaantagonisticAlthoughclassifiedpathotype3AhigherseverityindexresistantcomparedMetabarcodinganalysisindicatedshiftresponseeitherfieldendophyticrespondedchangestypetimecontrastsignificantdifferencestimeslowvariabilityClubroot-InducedChangesRhizosphereMicrobiomeSusceptibleResistantCanolaPlasmodiophorabrassicaeresistance

Similar Articles

Cited By