Prodromic Inflammatory-Oxidative Stress in Peritoneal Leukocytes of Triple-Transgenic Mice for Alzheimer's Disease.

Noemí Ceprián, Irene Martínez de Toda, Ianire Maté, Antonio Garrido, Lydia Gimenez-Llort, Mónica De la Fuente
Author Information
  1. Noemí Ceprián: Animal Physiology Unit, Department of Genetics, Physiology and Microbiology, Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain. ORCID
  2. Irene Martínez de Toda: Animal Physiology Unit, Department of Genetics, Physiology and Microbiology, Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain.
  3. Ianire Maté: Department of Immunology, Microbiology and Parasitology, Faculty of Pharmacy, University of the Basque Country, 01006 Vitoria-Gasteiz, Spain.
  4. Antonio Garrido: Department of Biosciences, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, 28670 Madrid, Spain. ORCID
  5. Lydia Gimenez-Llort: Department of Psychiatry and Forensic Medicine, Institute of Neuroscience, School of Medicine, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain. ORCID
  6. Mónica De la Fuente: Animal Physiology Unit, Department of Genetics, Physiology and Microbiology, Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain.

Abstract

Inflammatory-oxidative stress is known to be pivotal in the pathobiology of Alzheimer's disease (AD), but the involvement of this stress at the peripheral level in the disease's onset has been scarcely studied. This study investigated the pro-inflammatory profile and oxidative stress parameters in peritoneal leukocytes from female triple-transgenic Mice for AD (3xTgAD) and non-transgenic Mice (NTg). Peritoneal leukocytes were obtained at 2, 4, 6, 12, and 15 months of age. The concentrations of TNFα, INFγ, IL-1β, IL-2, IL-6, IL-17, and IL-10 released in cultures without stimuli and mitogen concanavalin A and lipopolysaccharide presence were measured. The concentrations of reduced glutathione (GSH), oxidized glutathione (GSSG), lipid peroxidation, and Hsp70 were also analyzed in the peritoneal cells. Our results showed that although there was a lower release of pro-inflammatory cytokines by 3xTgAD Mice, this response was uncontrolled and overstimulated, especially at a prodromal stage at 2 months of age. In addition, there were lower concentrations of GSH in leukocytes from 3xTgAD and higher amounts of lipid peroxides at 2 and 4 months, as well as, at 6 months, a lower concentration of Hsp70. In conclusion, 3xTgAD Mice show a worse pro-inflammatory response and higher oxidative stress than NTg Mice during the prodromal stages, potentially supporting the idea that Alzheimer's disease could be a consequence of peripheral alteration in the leukocyte inflammation-oxidation state.

Keywords

References

  1. J Neuroinflammation. 2018 Dec 12;15(1):342 [PMID: 30541566]
  2. Med Hypotheses. 2010 Apr;74(4):722-4 [PMID: 19944539]
  3. Sci Rep. 2018 Aug 13;8(1):12050 [PMID: 30104698]
  4. Int J Mol Sci. 2022 Aug 19;23(16): [PMID: 36012599]
  5. Curr Psychiatry Rep. 2005 Oct;7(5):391-5 [PMID: 16216160]
  6. Aging Cell. 2019 Feb;18(1):e12873 [PMID: 30488653]
  7. Biochem Soc Symp. 2001;(67):141-9 [PMID: 11447830]
  8. J Integr Neurosci. 2022 Mar 28;21(2):73 [PMID: 35364661]
  9. Neuron. 2015 Feb 4;85(3):534-48 [PMID: 25619654]
  10. Mediators Inflamm. 2013;2013:434010 [PMID: 23533306]
  11. Alzheimers Dement. 2010 Sep;6(5):420-4 [PMID: 20813343]
  12. Neurobiol Aging. 2003 Dec;24(8):1063-70 [PMID: 14643377]
  13. Ann N Y Acad Sci. 2012 Jul;1261:64-71 [PMID: 22823395]
  14. CMAJ. 2004 Oct 12;171(8):863-7 [PMID: 15477624]
  15. Front Endocrinol (Lausanne). 2019 Apr 29;10:265 [PMID: 31110493]
  16. Neurobiol Aging. 2000 May-Jun;21(3):383-421 [PMID: 10858586]
  17. Alzheimers Dement (N Y). 2020 Nov 02;6(1):e12100 [PMID: 33163614]
  18. Acta Neurol Scand. 1991 Jul;84(1):65-7 [PMID: 1927262]
  19. Neuroimmunomodulation. 2008;15(4-6):331-43 [PMID: 19047809]
  20. Endocr Rev. 1996 Feb;17(1):64-102 [PMID: 8641224]
  21. J Alzheimers Dis. 2014;38(2):403-13 [PMID: 23979026]
  22. Redox Biol. 2018 May;15:490-503 [PMID: 29413961]
  23. J Alzheimers Dis. 2019;71(1):153-163 [PMID: 31356205]
  24. J Gerontol A Biol Sci Med Sci. 2015 Apr;70(4):518-24 [PMID: 25070660]
  25. Alzheimers Dement. 2018 Dec;14(12):1602-1614 [PMID: 30314800]
  26. Alzheimers Dement (N Y). 2018 Sep 06;4:575-590 [PMID: 30406177]
  27. J Interferon Cytokine Res. 2014 Nov;34(11):839-47 [PMID: 24831467]
  28. Int J Mol Sci. 2024 Apr 10;25(8): [PMID: 38673789]
  29. J Neurol Neurosurg Psychiatry. 2018 Apr;89(4):339-345 [PMID: 29248892]
  30. N Engl J Med. 2001 Mar 29;344(13):961-6 [PMID: 11274622]
  31. Ann N Y Acad Sci. 2012 Jul;1262:74-84 [PMID: 22823438]
  32. Mol Neurobiol. 2014 Oct;50(2):534-44 [PMID: 24567119]
  33. Exp Gerontol. 2016 Nov;84:21-28 [PMID: 27582425]
  34. Mol Psychiatry. 2004 Jul;9(7):664-83 [PMID: 15052274]
  35. Exp Gerontol. 2007 Mar;42(3):233-40 [PMID: 17085001]
  36. Neurochem Res. 2011 Jan;36(1):1-6 [PMID: 20820913]
  37. J Neurol Neurosurg Psychiatry. 2017 Oct;88(10):876-882 [PMID: 28794151]
  38. Trends Mol Med. 2018 Sep;24(9):794-804 [PMID: 30006148]
  39. J Immunol. 1997 Feb 1;158(3):1275-83 [PMID: 9013970]
  40. Am J Transl Res. 2016 Feb 15;8(2):246-69 [PMID: 27158324]
  41. J Am Geriatr Soc. 2002 Dec;50(12):2041-56 [PMID: 12473019]
  42. Life Sci. 1991;48(4):301-9 [PMID: 1990230]
  43. Neuropathol Appl Neurobiol. 2013 Feb;39(1):51-68 [PMID: 23046210]
  44. Sci Rep. 2017 Dec 19;7(1):17842 [PMID: 29259216]
  45. Arthritis Res Ther. 2007;9(6):R125 [PMID: 18053164]
  46. J Atheroscler Thromb. 2021 Mar 1;28(3):249-260 [PMID: 32741893]
  47. Free Radic Biol Med. 2008 Jun 15;44(12):2051-7 [PMID: 18423383]
  48. Kidney Int. 2006 Nov;70(10):1694-705 [PMID: 16969387]
  49. Exp Neurobiol. 2013 Jun;22(2):84-95 [PMID: 23833557]
  50. Neurosci Bull. 2016 Oct;32(5):469-80 [PMID: 27568024]
  51. EMBO J. 2008 Jan 23;27(2):328-35 [PMID: 18216875]
  52. Pharmacol Res. 2021 Apr;166:105479 [PMID: 33549728]
  53. Neurodegener Dis. 2017;17(4-5):227-234 [PMID: 28719891]
  54. J Alzheimers Dis. 2021;81(4):1345-1360 [PMID: 33935086]
  55. N Engl J Med. 2010 Jan 28;362(4):329-44 [PMID: 20107219]
  56. J Cent Nerv Syst Dis. 2020 Feb 29;12:1179573520907397 [PMID: 32165850]
  57. Eur Cytokine Netw. 2009 Jun;20(2):75-80 [PMID: 19541593]
  58. Anal Biochem. 1976 Jul;74(1):214-26 [PMID: 962076]
  59. Int J Neurosci. 2023 Dec;133(10):1071-1089 [PMID: 35282779]
  60. Neuron. 2015 Feb 4;85(3):519-33 [PMID: 25619653]
  61. Lancet Public Health. 2022 Feb;7(2):e105-e125 [PMID: 34998485]
  62. J Neurol Neurosurg Spine. 2016;1(1): [PMID: 28127589]
  63. Int J Mol Sci. 2017 Jul 24;18(7): [PMID: 28737707]
  64. Age (Dordr). 2011 Jun;33(2):209-17 [PMID: 20617391]
  65. Front Cell Neurosci. 2017 Jul 24;11:216 [PMID: 28790893]
  66. Age (Dordr). 2014;36(4):9696 [PMID: 25081109]
  67. Immunol Lett. 2008 May 15;117(2):198-202 [PMID: 18367253]
  68. Front Horm Res. 2017;48:1-18 [PMID: 28245448]
  69. Int J Mol Sci. 2022 Sep 06;23(18): [PMID: 36142143]
  70. BMC Neurosci. 2008 Dec 03;9 Suppl 2:S8 [PMID: 19090996]
  71. Front Immunol. 2018 Jan 11;8:1974 [PMID: 29375582]
  72. Brain Behav Immun. 2018 May;70:61-75 [PMID: 29499302]
  73. Molecules. 2019 Dec 03;24(23): [PMID: 31816853]
  74. J Neurol Sci. 2017 Feb 15;373:295-302 [PMID: 28131209]
  75. J Neurosci Res. 2004 Oct 15;78(2):151-6 [PMID: 15378607]
  76. Cell Immunol. 1998 Feb 1;183(2):149-56 [PMID: 9606999]
  77. JAMA. 2019 Aug 06;322(5):430-437 [PMID: 31302669]
  78. Pathophysiology. 2006 Aug;13(3):195-208 [PMID: 16781128]
  79. Int J Mol Sci. 2020 Mar 13;21(6): [PMID: 32183152]
  80. Brain Res. 2010 Aug 12;1348:139-48 [PMID: 20471965]
  81. Nat Rev Neurosci. 2008 Jul;9(7):532-44 [PMID: 18568014]
  82. Front Neurosci. 2021 Apr 23;15:653651 [PMID: 33967682]
  83. Biogerontology. 2015 Dec;16(6):709-21 [PMID: 26386684]
  84. Immunol Rev. 2020 Sep;297(1):225-246 [PMID: 32588460]
  85. Alzheimers Dement. 2014 Jan;10(1):115-31 [PMID: 23850333]
  86. Psychogeriatrics. 2017 Jul;17(4):224-230 [PMID: 28130814]
  87. PLoS One. 2015 Mar 02;10(3):e0116206 [PMID: 25730322]
  88. Neurotherapeutics. 2019 Jul;16(3):649-665 [PMID: 31364065]
  89. J Neurol Sci. 2017 May 15;376:242-254 [PMID: 28431620]
  90. Eur J Epidemiol. 2019 May;34(5):451-462 [PMID: 30771035]
  91. Front Neurosci. 2021 Nov 04;15:734158 [PMID: 34803583]
  92. Physiology (Bethesda). 2016 Jul;31(4):258-69 [PMID: 27252161]
  93. Exp Gerontol. 2012 Aug;47(8):625-30 [PMID: 22664577]
  94. Immunity. 2023 Aug 8;56(8):1712-1726 [PMID: 37557080]
  95. Dement Geriatr Cogn Disord. 2009;28(6):507-12 [PMID: 19996595]
  96. Biochim Biophys Acta. 2011 Dec;1814(12):1785-95 [PMID: 22019699]
  97. Antioxidants (Basel). 2022 Jan 23;11(2): [PMID: 35204096]
  98. J Alzheimers Dis. 2015;43(1):213-26 [PMID: 25079793]
  99. J Neurochem. 2023 Sep;166(6):891-903 [PMID: 37603311]
  100. J Neuroinflammation. 2017 Mar 11;14(1):50 [PMID: 28284226]
  101. J Neuroimmunol. 2009 May 29;210(1-2):67-72 [PMID: 19329192]
  102. Diagnostics (Basel). 2021 Aug 24;11(9): [PMID: 34573867]
  103. Liver Int. 2020 Sep;40(9):2148-2159 [PMID: 32558346]
  104. Antioxidants (Basel). 2020 Aug 13;9(8): [PMID: 32823544]
  105. Cell. 2019 Oct 3;179(2):312-339 [PMID: 31564456]
  106. Alzheimers Dement. 2020 Aug;16(8):1196-1204 [PMID: 32543760]
  107. J Neuroinflammation. 2005 Mar 11;2(1):9 [PMID: 15762998]
  108. Proteomics. 2007 Feb;7(4):605-616 [PMID: 17309106]
  109. Brain Behav Immun. 2007 Jan;21(1):34-44 [PMID: 17157762]
  110. Nat Rev Immunol. 2021 Aug;21(8):526-541 [PMID: 33649606]
  111. Autoimmun Rev. 2011 Dec;11(2):149-53 [PMID: 21996556]
  112. J Biomed Sci. 2015 Jun 24;22:46 [PMID: 26100815]
  113. J Alzheimers Dis. 2011;25(4):727-37 [PMID: 21593564]
  114. Exp Gerontol. 2010 Jan;45(1):5-14 [PMID: 19796673]
  115. J Neuroinflammation. 2019 Jan 5;16(1):3 [PMID: 30611289]
  116. J Neuroinflammation. 2019 Aug 13;16(1):166 [PMID: 31409354]
  117. Oxid Med Cell Longev. 2014;2014:360438 [PMID: 24999379]
  118. Neurobiol Aging. 2003 Nov;24(7):909-14 [PMID: 12928049]
  119. Curr Med Chem. 2019;26(20):3719-3753 [PMID: 30306855]
  120. Front Pediatr. 2017 Dec 14;5:255 [PMID: 29312902]
  121. Biogerontology. 2022 Jun;23(3):307-324 [PMID: 35654925]
  122. J Gerontol A Biol Sci Med Sci. 2014 Feb;69(2):165-73 [PMID: 23689826]
  123. Neurobiol Aging. 2013 Aug;34(8):2064-70 [PMID: 23561508]
  124. J Alzheimers Dis. 2008 May;13(4):437-49 [PMID: 18487851]
  125. FEBS Lett. 2017 Sep;591(17):2648-2660 [PMID: 28696498]
  126. Neuron. 2003 Jul 31;39(3):409-21 [PMID: 12895417]
  127. Neuroimmunol Neuroinflamm. 2017;4:82-92 [PMID: 29670933]
  128. J Neurosci. 2001 Jun 15;21(12):4183-7 [PMID: 11404403]

Grants

  1. BFU 2011-30336/MINECO
  2. 910379/Research Group UCM
  3. PI15/01787/ISCIII-FEDER of the European Union

MeSH Term

Animals
Alzheimer Disease
Oxidative Stress
Mice, Transgenic
Mice
Leukocytes
Female
Cytokines
Glutathione
Lipid Peroxidation
Inflammation
Disease Models, Animal
HSP70 Heat-Shock Proteins

Chemicals

Cytokines
Glutathione
HSP70 Heat-Shock Proteins

Word Cloud

Created with Highcharts 10.0.0mice3xTgADstressmonthsAlzheimer'sdiseasepro-inflammatoryoxidativeleukocytes2concentrationslowerADperipheralperitonealtriple-transgenicNTgPeritoneal46ageglutathioneGSHlipidHsp70cytokinesresponseprodromalhigherInflammatory-oxidativeknownpivotalpathobiologyinvolvementleveldisease'sonsetscarcelystudiedstudyinvestigatedprofileparametersfemalenon-transgenicobtained1215TNFαINFγIL-1βIL-2IL-6IL-17IL-10releasedcultureswithoutstimulimitogenconcanavalinlipopolysaccharidepresencemeasuredreducedoxidizedGSSGperoxidationalsoanalyzedcellsresultsshowedalthoughreleaseuncontrolledoverstimulatedespeciallystageadditionamountsperoxideswellconcentrationconclusionshowworsestagespotentiallysupportingideaconsequencealterationleukocyteinflammation-oxidationstateProdromicInflammatory-OxidativeStressLeukocytesTriple-TransgenicMiceDiseaseinflammationlongevitydamageAlzheimer’s

Similar Articles

Cited By