Extracellular Vesicles Derived from Fruit (OFI-EVs) Speed Up the Normal Wound Healing Processes by Modulating Cellular Responses.

Anna Valentino, Raffaele Conte, Dalila Bousta, Hicham Bekkari, Anna Di Salle, Anna Calarco, Gianfranco Peluso
Author Information
  1. Anna Valentino: Research Institute on Terrestrial Ecosystems (IRET), CNR, Via Pietro Castellino 111, 80131 Naples, Italy. ORCID
  2. Raffaele Conte: Research Institute on Terrestrial Ecosystems (IRET), CNR, Via Pietro Castellino 111, 80131 Naples, Italy.
  3. Dalila Bousta: National Agency of Medicinal and Aromatic Plants Tounate, Taounate 34000, Morocco. ORCID
  4. Hicham Bekkari: Laboratory of Biotechnology, Environment, Agrofood and Health (LBEAS), Fez 30000, Morocco.
  5. Anna Di Salle: Research Institute on Terrestrial Ecosystems (IRET), CNR, Via Pietro Castellino 111, 80131 Naples, Italy. ORCID
  6. Anna Calarco: Research Institute on Terrestrial Ecosystems (IRET), CNR, Via Pietro Castellino 111, 80131 Naples, Italy. ORCID
  7. Gianfranco Peluso: Research Institute on Terrestrial Ecosystems (IRET), CNR, Via Pietro Castellino 111, 80131 Naples, Italy.

Abstract

Plant-derived extracellular vesicles (EVs) have been recognized as important mediators of intercellular communication able to transfer active biomolecules across the plant and animal kingdoms. EVs have demonstrated an impressive array of biological activities, displaying preventive and therapeutic potential in mitigating various pathological processes. Indeed, the simplicity of delivering exogenous and endogenous bioactive molecules to mammalian cells with their low cytotoxicity makes EVs suitable agents for new therapeutic strategies for a variety of pathologies. In this study, EVs were isolated from fruit (OFI-EVs) and characterized by particle size distribution, concentration, and bioactive molecule composition. OFI-EVs had no obvious toxicity and demonstrated a protective role in the inflammatory process and oxidative stress in vitro model of chronic skin wounds. The results demonstrated that pretreatment with OFI-EVs decreased the activity and gene expression of pro-inflammatory cytokines (IL-6, IL-8, and TNF-α) in the LPS-stimulated human leukemia monocytic cell line (THP-1). Furthermore, OFI-EVs promote the migration of human dermal fibroblasts (HDFs), speeding up the normal wound healing processes. This study sheds light, for the first time, on the role of OFI-EVs in modulating important biological processes such as inflammation and oxidation, thereby identifying EVs as potential candidates for healing chronic cutaneous wounds.

Keywords

References

  1. Nat Plants. 2021 Mar;7(3):342-352 [PMID: 33633358]
  2. Plants (Basel). 2023 Jan 25;12(3): [PMID: 36771630]
  3. Physiol Rev. 2014 Apr;94(2):329-54 [PMID: 24692350]
  4. Front Pharmacol. 2021 Sep 14;12:722398 [PMID: 34594220]
  5. Comb Chem High Throughput Screen. 2006 Jul;9(6):425-42 [PMID: 16842224]
  6. Pharmaceutics. 2022 Sep 08;14(9): [PMID: 36145653]
  7. Signal Transduct Target Ther. 2024 Feb 5;9(1):27 [PMID: 38311623]
  8. Food Funct. 2021 Jun 8;12(11):5144-5156 [PMID: 33977960]
  9. Food Res Int. 2014 Oct;64:864-872 [PMID: 30011726]
  10. J Agric Food Chem. 2003 Aug 13;51(17):4903-8 [PMID: 12903943]
  11. Plants (Basel). 2023 Mar 30;12(7): [PMID: 37050137]
  12. Nutrients. 2019 May 27;11(5): [PMID: 31137826]
  13. Life (Basel). 2021 Jul 07;11(7): [PMID: 34357037]
  14. Plants (Basel). 2023 Dec 12;12(24): [PMID: 38140468]
  15. J Nanobiotechnology. 2023 Mar 29;21(1):114 [PMID: 36978093]
  16. Front Physiol. 2020 Jul 02;11:694 [PMID: 32714204]
  17. Int J Mol Sci. 2024 Feb 20;25(5): [PMID: 38473700]
  18. Mol Cell Biochem. 2021 Mar;476(3):1589-1597 [PMID: 33398666]
  19. Food Res Int. 2018 Oct;112:328-344 [PMID: 30131144]
  20. Biomaterials. 2019 Sep;216:119267 [PMID: 31247480]
  21. Alcohol. 2012 May;46(3):235-43 [PMID: 22445806]
  22. Pharmaceutics. 2022 Apr 08;14(4): [PMID: 35456656]
  23. Food Chem. 2023 Dec 1;428:136756 [PMID: 37413837]
  24. PeerJ. 2018 Jul 31;6:e5186 [PMID: 30083436]
  25. Syst Rev. 2017 Jan 24;6(1):15 [PMID: 28118847]
  26. J Agric Food Chem. 2000 Oct;48(10):4581-9 [PMID: 11052704]
  27. Chem Biodivers. 2022 May;19(5):e202100923 [PMID: 35470943]
  28. Food Funct. 2022 Dec 13;13(24):12870-12882 [PMID: 36441623]
  29. Int J Mol Sci. 2023 Feb 27;24(5): [PMID: 36902038]
  30. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2023 Jan;15(1):e1835 [PMID: 35898167]
  31. Adv Sci (Weinh). 2022 Apr;9(10):e2105152 [PMID: 35138042]
  32. Antioxidants (Basel). 2022 Jun 20;11(6): [PMID: 35740107]
  33. Pharmaceutics. 2023 Mar 01;15(3): [PMID: 36986666]
  34. PLoS One. 2016 Mar 29;11(3):e0152575 [PMID: 27023062]
  35. Molecules. 2014 Sep 17;19(9):14879-901 [PMID: 25232708]
  36. Adv Wound Care (New Rochelle). 2015 Apr 1;4(4):225-234 [PMID: 25945285]
  37. Eur J Pharm Sci. 2023 Dec 1;191:106604 [PMID: 37821012]
  38. Molecules. 2021 Aug 11;26(16): [PMID: 34443457]
  39. Adv Drug Deliv Rev. 2018 Apr;129:219-241 [PMID: 29567398]
  40. Antioxidants (Basel). 2023 Jun 16;12(6): [PMID: 37372016]
  41. J Tissue Eng. 2023 Jul 27;14:20417314231185848 [PMID: 37529248]
  42. Redox Rep. 2012;17(2):47-53 [PMID: 22564347]
  43. Expert Opin Drug Deliv. 2020 Dec;17(12):1767-1780 [PMID: 32882162]
  44. Food Chem. 2016 Nov 1;210:558-65 [PMID: 27211682]
  45. Nutrients. 2018 Nov 02;10(11): [PMID: 30400131]
  46. J Extracell Vesicles. 2018 Nov 23;7(1):1535750 [PMID: 30637094]
  47. Front Immunol. 2022 Mar 01;13:789274 [PMID: 35300324]
  48. Int J Biol Macromol. 2018 Aug;115:1211-1217 [PMID: 29730004]
  49. Appl Biochem Biotechnol. 2019 Jun;188(2):381-394 [PMID: 30474796]
  50. J Food Sci Technol. 2021 Dec;58(12):4693-4702 [PMID: 34629533]
  51. Mediators Inflamm. 2017;2017:5095293 [PMID: 29180836]
  52. Molecules. 2022 Jul 25;27(15): [PMID: 35897933]
  53. Pharmaceutics. 2022 May 17;14(5): [PMID: 35631658]

Grants

  1. CUP B83C22002930006/National Recovery and Resilience Plan (NRRP), Mission 4 Component 2 Investment 1.4 - Call for tender No. 3138 of 16 December 2021, rectified by Decree n.3175 of 18 December 2021 of Italian Ministry of University and Research funded by the European Union -
  2. 734759/National Biodiversity Future Center - NBFC". EU funding within the Horizon 2020 Program, under the MSCA-RISE 2016 Project "VAHVISTUS"
  3. n.F/200004/01-02/X45/POR 2014-2020 FESR MISE Prog. n.F/200004/01-02/X45: Micro-Poli, Titolo: Micro-nanodispositivi veicolanti polifenoli isolati da scarti della filiera olivicola come nuovi integratori alimentari.

MeSH Term

Opuntia
Humans
Extracellular Vesicles
Wound Healing
Fruit
Fibroblasts
Cytokines
Cell Movement
Oxidative Stress
THP-1 Cells

Chemicals

Cytokines

Word Cloud

Created with Highcharts 10.0.0OFI-EVsEVsdemonstratedprocesseswoundsextracellularvesiclesimportantbiologicaltherapeuticpotentialbioactivestudyrolechronichumanhealingPlant-derivedrecognizedmediatorsintercellularcommunicationabletransferactivebiomoleculesacrossplantanimalkingdomsimpressivearrayactivitiesdisplayingpreventivemitigatingvariouspathologicalIndeedsimplicitydeliveringexogenousendogenousmoleculesmammaliancellslowcytotoxicitymakessuitableagentsnewstrategiesvarietypathologiesisolatedfruitcharacterizedparticlesizedistributionconcentrationmoleculecompositionobvioustoxicityprotectiveinflammatoryprocessoxidativestressvitromodelskinresultspretreatmentdecreasedactivitygeneexpressionpro-inflammatorycytokinesIL-6IL-8TNF-αLPS-stimulatedleukemiamonocyticcelllineTHP-1FurthermorepromotemigrationdermalfibroblastsHDFsspeedingnormalwoundshedslightfirsttimemodulatinginflammationoxidationtherebyidentifyingcandidatescutaneousExtracellularVesiclesDerivedFruitSpeedNormalWoundHealingProcessesModulatingCellularResponsesOpuntiaantioxidantcellularresponsesflavonoidsphenolsinjuries

Similar Articles

Cited By