Enhanced Antibacterial Activity of Vancomycin Loaded on Functionalized Polyketones.

Rachele Rampazzo, Andrea Vavasori, Lucio Ronchin, Pietro Riello, Martina Marchiori, Gloria Saorin, Valentina Beghetto
Author Information
  1. Rachele Rampazzo: Department of Molecular Sciences and Nanosystems, University Ca' Foscari of Venice, Via Torino5 155, 30172 Venice, Italy.
  2. Andrea Vavasori: Department of Molecular Sciences and Nanosystems, University Ca' Foscari of Venice, Via Torino5 155, 30172 Venice, Italy. ORCID
  3. Lucio Ronchin: Department of Molecular Sciences and Nanosystems, University Ca' Foscari of Venice, Via Torino5 155, 30172 Venice, Italy.
  4. Pietro Riello: Department of Molecular Sciences and Nanosystems, University Ca' Foscari of Venice, Via Torino5 155, 30172 Venice, Italy.
  5. Martina Marchiori: Department of Molecular Sciences and Nanosystems, University Ca' Foscari of Venice, Via Torino5 155, 30172 Venice, Italy.
  6. Gloria Saorin: Department of Molecular Sciences and Nanosystems, University Ca' Foscari of Venice, Via Torino5 155, 30172 Venice, Italy. ORCID
  7. Valentina Beghetto: Department of Molecular Sciences and Nanosystems, University Ca' Foscari of Venice, Via Torino5 155, 30172 Venice, Italy. ORCID

Abstract

Today, polymeric drug delivery systems (DDS) appear as an interesting solution against bacterial resistance, having great advantages such as low toxicity, biocompatibility, and biodegradability. In this work, two polyketones (PK) have been post-functionalized with sodium taurinate (PKT) or potassium sulfanilate (PKSK) and employed as carriers for Vancomycin against bacterial infections. Modified PKs were easily prepared by the Paal-Knorr reaction and loaded with Vancomycin at a variable pH. All polymers were characterized by FT-IR, DSC, TGA, SEM, and elemental analysis. Antimicrobial activity was tested against Gram-positive ATCC 25923 and correlated to the different pHs used for its loading (between 2.3 and 8.8). In particular, the minimum inhibitory concentrations achieved with PKT and PKSK loaded with Vancomycin were similar, at 0.23 μg/mL and 0.24 μg/mL, respectively, i.e., six times lower than that with Vancomycin alone. The use of post-functionalized aliphatic polyketones has thus been demonstrated to be a promising way to obtain very efficient polymeric DDS.

Keywords

References

  1. Adv Drug Deliv Rev. 2021 Jul;174:30-52 [PMID: 33845040]
  2. Polymers (Basel). 2023 Mar 23;15(7): [PMID: 37050210]
  3. Biomaterials. 2007 Dec;28(34):5155-68 [PMID: 17764738]
  4. ACS Macro Lett. 2022 Feb 15;11(2):179-185 [PMID: 35574766]
  5. Molecules. 2019 Oct 07;24(19): [PMID: 31591356]
  6. Polymers (Basel). 2019 Feb 15;11(2): [PMID: 30960327]
  7. Int J Biol Macromol. 2024 Jan;256(Pt 2):128491 [PMID: 38043666]
  8. Environ Pollut. 2023 Oct 1;334:122102 [PMID: 37414120]
  9. Urologe A. 2007 Sep;46(9):1247-8 [PMID: 17671775]
  10. Molecules. 2018 Dec 22;24(1): [PMID: 30583527]
  11. Chem Asian J. 2021 Dec 1;16(23):3864-3872 [PMID: 34618408]
  12. Nat Rev Microbiol. 2022 May;20(5):257-269 [PMID: 34737424]
  13. Pharmaceutics. 2023 Oct 29;15(11): [PMID: 38004534]
  14. Mol Pharm. 2017 May 1;14(5):1325-1338 [PMID: 28080053]
  15. J Infect Public Health. 2023 Apr;16(4):611-617 [PMID: 36857834]
  16. Eur J Pharm Biopharm. 2008 Oct;70(2):467-77 [PMID: 18577453]
  17. Front Pharmacol. 2024 Apr 10;15:1342821 [PMID: 38659587]
  18. J Nanobiotechnology. 2018 Sep 19;16(1):71 [PMID: 30231877]
  19. Polymers (Basel). 2022 Aug 26;14(17): [PMID: 36080569]
  20. Molecules. 2021 Sep 29;26(19): [PMID: 34641447]
  21. ChemMedChem. 2021 Oct 15;16(20):3172-3176 [PMID: 34288499]
  22. Colloids Surf B Biointerfaces. 2014 May 1;117:303-11 [PMID: 24667076]
  23. Acc Chem Res. 2023 Nov 7;56(21):2954-2967 [PMID: 37852202]
  24. Acc Chem Res. 2021 Oct 19;54(20):3953-3967 [PMID: 34601864]
  25. J Control Release. 2022 Aug;348:206-238 [PMID: 35660634]
  26. Biomaterials. 2003 Feb;24(3):443-9 [PMID: 12423599]
  27. Adv Ther (Weinh). 2020 Jul;3(7): [PMID: 35531049]
  28. Chembiochem. 2010 Jul 5;11(10):1325-34 [PMID: 20564281]
  29. Pharm Res. 1995 Mar;12(3):413-20 [PMID: 7617530]
  30. ACS Macro Lett. 2018 Sep 18;7(9):1073-1079 [PMID: 35632938]
  31. Essays Biochem. 2017 Mar 3;61(1):1-10 [PMID: 28258225]
  32. Lancet Infect Dis. 2023 Jun;23(6):719-731 [PMID: 36731484]
  33. Carbohydr Polym. 2024 Jan 15;324:121536 [PMID: 37985110]
  34. Antibiotics (Basel). 2023 May 08;12(5): [PMID: 37237778]
  35. Chem Sci. 2022 Aug 9;13(35):10375-10382 [PMID: 36277626]
  36. Virulence. 2013 Apr 1;4(3):223-9 [PMID: 23380871]
  37. Pharm Dev Technol. 2017 Aug;22(5):627-634 [PMID: 26607946]
  38. J Control Release. 2023 Feb;354:394-416 [PMID: 36638844]
  39. Int J Biol Macromol. 2020 Mar 15;147:385-398 [PMID: 31926237]
  40. Front Microbiol. 2022 Dec 02;13:1001700 [PMID: 36532477]
  41. ADMET DMPK. 2022 Mar 04;10(2):131-146 [PMID: 35350115]
  42. RSC Adv. 2022 Dec 9;12(54):35358-35366 [PMID: 36540247]
  43. Materials (Basel). 2023 Aug 03;16(15): [PMID: 37570163]
  44. J Res Med Sci. 2013 Jul;18(7):601-10 [PMID: 24516494]
  45. Colloids Surf B Biointerfaces. 2013 Mar 1;103:174-81 [PMID: 23201735]
  46. Biomed Pharmacother. 2023 Aug;164:114966 [PMID: 37269809]
  47. Microorganisms. 2023 Jun 19;11(6): [PMID: 37375116]
  48. Clin Microbiol Rev. 2000 Oct;13(4):686-707 [PMID: 11023964]
  49. Int J Biol Macromol. 2022 Jun 1;209(Pt B):2009-2019 [PMID: 35513101]
  50. Chirality. 2011 Oct;23(9):779-83 [PMID: 22135807]
  51. J Infect Dis. 2023 Dec 20;228(12):1649-1651 [PMID: 37192330]
  52. J Med Chem. 2006 Jun 15;49(12):3436-9 [PMID: 16759083]
  53. Pharm Dev Technol. 2014 Dec;19(8):987-98 [PMID: 24147898]
  54. Polymers (Basel). 2020 Sep 03;12(9): [PMID: 32899443]
  55. Proc Natl Acad Sci U S A. 2023 Apr 11;120(15):e2208737120 [PMID: 37011186]
  56. Indian J Med Res. 2019 Feb;149(2):129-145 [PMID: 31219077]
  57. Clin Infect Dis. 2006 Jan 1;42 Suppl 1:S5-12 [PMID: 16323120]
  58. Biomaterials. 2013 Jan;34(4):1327-36 [PMID: 23149013]
  59. Polymers (Basel). 2023 Feb 14;15(4): [PMID: 36850222]
  60. Gels. 2023 Sep 01;9(9): [PMID: 37754390]
  61. J Biotechnol. 2007 Jan 20;127(4):670-8 [PMID: 17007953]
  62. Ann N Y Acad Sci. 2020 Jan;1459(1):5-18 [PMID: 31165502]
  63. Antibiotics (Basel). 2022 Aug 09;11(8): [PMID: 36009947]
  64. ACS Omega. 2020 May 18;5(21):11935-11945 [PMID: 32548372]
  65. ACS Appl Mater Interfaces. 2015 Dec 9;7(48):26530-48 [PMID: 26528585]
  66. Eur Polym J. 2021 Sep 5;158:110685 [PMID: 34366437]
  67. J Adv Res. 2023 Jan;43:87-96 [PMID: 36585117]
  68. Eur J Pharm Sci. 2017 Mar 30;100:142-154 [PMID: 28089661]
  69. RSC Adv. 2021 Aug 19;11(45):28092-28096 [PMID: 35480717]
  70. Molecules. 2021 Jan 02;26(1): [PMID: 33401732]
  71. Sci Rep. 2020 Jan 22;10(1):960 [PMID: 31969624]
  72. Int J Nanomedicine. 2015 Jul 07;10:4351-66 [PMID: 26185439]
  73. Int J Pharm. 2016 Sep 10;511(1):190-197 [PMID: 27418562]
  74. Chem Mater. 2012 Mar 13;24(5):840-853 [PMID: 22707853]
  75. Pharmaceutics. 2023 Feb 18;15(2): [PMID: 36840018]
  76. AAPS PharmSciTech. 2008;9(4):1218-29 [PMID: 19085110]
  77. Res Microbiol. 2023 May;174(4):104046 [PMID: 36858192]

Word Cloud

Created with Highcharts 10.0.0VancomycinpolymericdrugdeliveryDDSbacterialpolyketonespost-functionalizedPKTPKSKloaded80μg/mLTodaysystemsappearinterestingsolutionresistancegreatadvantageslowtoxicitybiocompatibilitybiodegradabilityworktwoPKsodiumtaurinatepotassiumsulfanilateemployedcarriersinfectionsModifiedPKseasilypreparedPaal-KnorrreactionvariablepHpolymerscharacterizedFT-IRDSCTGASEMelementalanalysisAntimicrobialactivitytestedGram-positiveATCC25923correlateddifferentpHsusedloading23particularminimuminhibitoryconcentrationsachievedsimilar2324respectivelyiesixtimesloweraloneusealiphaticthusdemonstratedpromisingwayobtainefficientEnhancedAntibacterialActivityLoadedFunctionalizedPolyketonesPaal–Knorrantibioticspolyketone

Similar Articles

Cited By