Increasing the efficiency of CRISPR/Cas9-mediated genome editing in the citrus postharvest pathogen Penicillium digitatum.

Carolina Ropero-P��rez, Jose F Marcos, Paloma Manzanares, Sandra Garrigues
Author Information
  1. Carolina Ropero-P��rez: Food Biotechnology Department, Instituto de Agroqu��mica y Tecnolog��a de Alimentos (IATA), Consejo Superior de Investigaciones Cient��ficas (CSIC), Catedr��tico Agust��n Escardino Benlloch 7, Paterna, Valencia, 46980, Spain.
  2. Jose F Marcos: Food Biotechnology Department, Instituto de Agroqu��mica y Tecnolog��a de Alimentos (IATA), Consejo Superior de Investigaciones Cient��ficas (CSIC), Catedr��tico Agust��n Escardino Benlloch 7, Paterna, Valencia, 46980, Spain.
  3. Paloma Manzanares: Food Biotechnology Department, Instituto de Agroqu��mica y Tecnolog��a de Alimentos (IATA), Consejo Superior de Investigaciones Cient��ficas (CSIC), Catedr��tico Agust��n Escardino Benlloch 7, Paterna, Valencia, 46980, Spain.
  4. Sandra Garrigues: Food Biotechnology Department, Instituto de Agroqu��mica y Tecnolog��a de Alimentos (IATA), Consejo Superior de Investigaciones Cient��ficas (CSIC), Catedr��tico Agust��n Escardino Benlloch 7, Paterna, Valencia, 46980, Spain. sgarrigues@iata.csic.es.

Abstract

BACKGROUND: Penicillium digitatum is a fungal plant pathogen that causes the green mold disease in harvested citrus fruits. Due to its economical relevance, many efforts have focused on the development of genetic engineering tools for this fungus. Adaptation of the CRISPR/Cas9 technology was previously accomplished with self-replicative AMA1-based plasmids for marker-free gene editing, but the resulting efficiency (10%) limited its practical implementation. In this study, we aimed to enhance the efficiency of the CRISPR/Cas9-mediated gene editing in P. digitatum to facilitate its practical use.
RESULTS: Increasing the culture time by performing additional culture streaks under selection conditions in a medium that promotes slower growth rates significantly improved the gene editing efficiency in P. digitatum up to 54-83%. To prove this, we disrupted five candidate genes that were chosen based on our previous high-throughput gene expression studies aimed at elucidating the transcriptomic response of P. digitatum to the antifungal protein PdAfpB. Two of these genes lead to visual phenotypic changes (PDIG_53730/pksP, and PDIG_54100/arp2) and allowed to start the protocol optimization. The other three candidates (PDIG_56860, PDIG_33760/rodA and PDIG_68680/dfg5) had no visually associated phenotype and were targeted to confirm the high efficiency of the protocol.
CONCLUSION: Genome editing efficiency of P. digitatum was significantly increased from 10% to up to 83% through the modification of the selection methodology, which demonstrates the feasibility of the CRISPR/Cas9 system for gene disruption in this phytopathogenic fungus. Moreover, the approach described in this study might help increase CRISPR/Cas9 gene editing efficiencies in other economically relevant fungal species for which editing efficiency via CRISPR/Cas9 is still low.

Keywords

References

  1. Fungal Genet Biol. 2017 Apr;101:55-60 [PMID: 28286319]
  2. Curr Genet. 2022 Aug;68(3-4):515-529 [PMID: 35298666]
  3. Biotechnol Adv. 2013 Dec;31(8):1562-74 [PMID: 23988676]
  4. Sci Rep. 2021 Jan 13;11(1):1118 [PMID: 33441979]
  5. Microb Cell Fact. 2016 Nov 11;15(1):192 [PMID: 27835989]
  6. PLoS One. 2015 Jul 15;10(7):e0133085 [PMID: 26177455]
  7. J Genet Genomics. 2017 Apr 20;44(4):199-205 [PMID: 28412228]
  8. Res Microbiol. 2015 Jan;166(1):56-65 [PMID: 25530311]
  9. mBio. 2022 Nov 14;13(6):e0275422 [PMID: 36374077]
  10. Fungal Genet Biol. 2014 Jun;67:58-70 [PMID: 24727399]
  11. PLoS One. 2018 Aug 24;13(8):e0202868 [PMID: 30142205]
  12. Front Microbiol. 2018 Oct 05;9:2370 [PMID: 30344516]
  13. Front Microbiol. 2019 Oct 18;10:2400 [PMID: 31681248]
  14. J Fungi (Basel). 2020 Oct 02;6(4): [PMID: 33023232]
  15. J Bacteriol. 1951 Sep;62(3):293-300 [PMID: 14888646]
  16. Fungal Biol Biotechnol. 2019 Sep 21;6:13 [PMID: 31559019]
  17. J Biotechnol. 2007 Mar 10;128(4):770-5 [PMID: 17275117]
  18. ACS Synth Biol. 2016 Jul 15;5(7):754-64 [PMID: 27072635]
  19. Nature. 2012 Apr 11;484(7393):186-94 [PMID: 22498624]
  20. J Microbiol Methods. 2017 Apr;135:26-34 [PMID: 28159628]
  21. Fungal Biol. 2019 Aug;123(8):584-593 [PMID: 31345412]
  22. Microb Biotechnol. 2022 Feb;15(2):630-647 [PMID: 35084102]
  23. Fungal Biol Biotechnol. 2019 Oct 17;6:15 [PMID: 31641526]
  24. Fungal Biol Rev. 2013 Jan;26(4):132-145 [PMID: 23412850]
  25. Appl Microbiol Biotechnol. 2024 Mar 27;108(1):277 [PMID: 38536496]
  26. Nat Biotechnol. 2014 Dec;32(12):1262-7 [PMID: 25184501]
  27. Fungal Genet Biol. 2019 Mar;124:17-28 [PMID: 30579886]
  28. Microbiol Spectr. 2023 Jun 15;11(3):e0484622 [PMID: 37022187]
  29. PLoS One. 2009;4(5):e5553 [PMID: 19436741]
  30. mBio. 2023 Aug 31;14(4):e0066823 [PMID: 37486124]
  31. BMC Genomics. 2012 Nov 21;13:646 [PMID: 23171342]
  32. Sci Rep. 2017 Nov 7;7(1):14663 [PMID: 29116156]
  33. Appl Microbiol Biotechnol. 2022 Aug;106(13-16):5123-5136 [PMID: 35771244]
  34. Science. 2012 Aug 17;337(6096):816-21 [PMID: 22745249]
  35. Biotechnol Adv. 2019 Nov 1;37(6):107361 [PMID: 30825514]
  36. Mol Plant Pathol. 2015 Sep;16(7):748-61 [PMID: 25640475]
  37. Appl Microbiol Biotechnol. 2017 Oct;101(20):7435-7443 [PMID: 28887634]
  38. Mol Microbiol. 2002 Nov;46(4):1011-22 [PMID: 12421307]
  39. Enzyme Microb Technol. 2020 Feb;133:109463 [PMID: 31874686]
  40. J Fungi (Basel). 2023 Mar 15;9(3): [PMID: 36983530]
  41. Mater Today Bio. 2023 Jan 21;19:100560 [PMID: 36756210]
  42. Microorganisms. 2019 Jul 12;7(7): [PMID: 31336863]

Word Cloud

Created with Highcharts 10.0.0editingefficiencydigitatumgeneCRISPR/Cas9PPenicilliumfungalpathogencitrusfungus10%practicalstudyaimedCRISPR/Cas9-mediatedIncreasingcultureselectionsignificantlygenesexpressionprotocolfungiBACKGROUND:plantcausesgreenmolddiseaseharvestedfruitsDueeconomicalrelevancemanyeffortsfocuseddevelopmentgeneticengineeringtoolsAdaptationtechnologypreviouslyaccomplishedself-replicativeAMA1-basedplasmidsmarker-freeresultinglimitedimplementationenhancefacilitateuseRESULTS:timeperformingadditionalstreaksconditionsmediumpromotesslowergrowthratesimproved54-83%provedisruptedfivecandidatechosenbasedprevioushigh-throughputstudieselucidatingtranscriptomicresponseantifungalproteinPdAfpBTwoleadvisualphenotypicchangesPDIG_53730/pksPPDIG_54100/arp2allowedstartoptimizationthreecandidatesPDIG_56860PDIG_33760/rodAPDIG_68680/dfg5visuallyassociatedphenotypetargetedconfirmhighCONCLUSION:Genomeincreased83%modificationmethodologydemonstratesfeasibilitysystemdisruptionphytopathogenicMoreoverapproachdescribedmighthelpincreaseefficiencieseconomicallyrelevantspeciesviastilllowgenomepostharvestEpisomalvectorFilamentousGenetargetingNon-model

Similar Articles

Cited By

No available data.