Molecular characterization of vaginal microbiota using a new 22-species qRT-PCR test to achieve a relative-abundance and species-based diagnosis of bacterial vaginosis.

Ayodeji B Oyenihi, Ronald Haines, Jason Trama, Sebastian Faro, Eli Mordechai, Martin E Adelson, John Osei Sekyere
Author Information
  1. Ayodeji B Oyenihi: Institute for Biomarker Research, Medical Diagnostic Laboratories, Genesis Biotechnology Group, Hamilton, NJ, United States.
  2. Ronald Haines: Institute for Biomarker Research, Medical Diagnostic Laboratories, Genesis Biotechnology Group, Hamilton, NJ, United States.
  3. Jason Trama: Institute for Biomarker Research, Medical Diagnostic Laboratories, Genesis Biotechnology Group, Hamilton, NJ, United States.
  4. Sebastian Faro: Institute for Biomarker Research, Medical Diagnostic Laboratories, Genesis Biotechnology Group, Hamilton, NJ, United States.
  5. Eli Mordechai: Institute for Biomarker Research, Medical Diagnostic Laboratories, Genesis Biotechnology Group, Hamilton, NJ, United States.
  6. Martin E Adelson: Institute for Biomarker Research, Medical Diagnostic Laboratories, Genesis Biotechnology Group, Hamilton, NJ, United States.
  7. John Osei Sekyere: Institute for Biomarker Research, Medical Diagnostic Laboratories, Genesis Biotechnology Group, Hamilton, NJ, United States.

Abstract

Background: Numerous bacteria are involved in the etiology of bacterial vaginosis (BV). Yet, current tests only focus on a select few. We therefore designed a new test targeting 22 BV-relevant species.
Methods: Using 946 stored vaginal samples, a new qPCR test that quantitatively identifies 22 bacterial species was designed. The distribution and relative abundance of each species, α- and β-diversities, correlation, and species co-existence were determined per sample. A diagnostic index was modeled from the data, trained, and tested to classify samples into BV-positive, BV-negative, or transitional BV.
Results: The qPCR test identified all 22 targeted species with 95 - 100% sensitivity and specificity within 8 hours (from sample reception). Across most samples, , and sp. type 1 were relatively abundant. BVAB-1 was more abundant and distributed than BVAB-2 and BVAB-3. No was found. The inter-sample similarity was very low, and correlations existed between key species, which were used to model, train, and test a diagnostic index: . The , using both species and relative abundance markers, classified samples into three vaginal microbiome states. Testing this index on our samples, 491 were BV-positive, 318 were BV-negative, and 137 were transitional BV. Although important differences in BV status were observed between different age groups, races, and pregnancy status, they were statistically insignificant.
Conclusion: Using a diverse and large number of vaginal samples from different races and age groups, including pregnant women, the new qRT-PCR test and efficiently diagnosed BV within 8 hours (from sample reception), using 22 BV-associated species.

Keywords

References

  1. J Clin Microbiol. 2023 Aug 23;61(8):e0083722 [PMID: 37199636]
  2. PLoS One. 2017 Jul 11;12(7):e0181135 [PMID: 28700747]
  3. Dtsch Arztebl Int. 2023 May 19;120(20):347-354 [PMID: 37097068]
  4. Microbiol Spectr. 2022 Apr 27;10(2):e0273321 [PMID: 35266820]
  5. Microb Pathog. 2020 Apr;141:104029 [PMID: 32014462]
  6. Eur J Clin Microbiol Infect Dis. 2019 May;38(5):959-966 [PMID: 30903536]
  7. Sex Transm Dis. 2019 May;46(5):304-311 [PMID: 30624309]
  8. Sex Transm Dis. 2020 Dec;47(12):832-839 [PMID: 32740449]
  9. BMC Infect Dis. 2021 Aug 17;21(1):825 [PMID: 34404367]
  10. Diagn Microbiol Infect Dis. 2020 Feb;96(2):114950 [PMID: 31836253]
  11. Lancet Infect Dis. 2017 Aug;17(8):e235-e279 [PMID: 28701272]
  12. Sex Transm Dis. 2023 Apr 1;50(4):224-235 [PMID: 36729966]
  13. BMC Microbiol. 2023 Jul 13;23(1):186 [PMID: 37442975]
  14. J Clin Microbiol. 2019 Aug 26;57(9): [PMID: 31315951]
  15. Front Cell Infect Microbiol. 2022 Jul 22;12:959793 [PMID: 35937699]
  16. Front Microbiol. 2020 Mar 31;11:551 [PMID: 32296412]
  17. Front Cell Infect Microbiol. 2022 Jan 18;11:672429 [PMID: 35118003]
  18. PeerJ. 2022 Nov 29;10:e14449 [PMID: 36518275]
  19. BMC Microbiol. 2009 May 20;9:102 [PMID: 19457233]
  20. Curr Opin Infect Dis. 2020 Feb;33(1):59-65 [PMID: 31789672]
  21. Nutrients. 2020 Feb 06;12(2): [PMID: 32041107]
  22. NPJ Biofilms Microbiomes. 2020 Oct 12;6(1):39 [PMID: 33046723]
  23. Am J Obstet Gynecol. 2019 Feb;220(2):155-166 [PMID: 30321529]
  24. Ginekol Pol. 2015 May;86(5):328-34 [PMID: 26117968]
  25. Front Cell Infect Microbiol. 2022 May 11;12:863208 [PMID: 35646732]
  26. Antibiotics (Basel). 2021 Aug 13;10(8): [PMID: 34439028]
  27. Curr Res Immunol. 2023 Mar 28;4:100057 [PMID: 37025390]
  28. J Clin Microbiol. 1991 Feb;29(2):297-301 [PMID: 1706728]
  29. Semin Immunol. 2021 Jan;51:101482 [PMID: 34120819]
  30. Front Cell Infect Microbiol. 2021 Nov 22;11:792787 [PMID: 34881196]
  31. Microbiol Spectr. 2023 Aug 17;11(4):e0467622 [PMID: 37347202]
  32. Obstet Gynecol Clin North Am. 2023 Jun;50(2):311-326 [PMID: 37149312]
  33. Diagn Microbiol Infect Dis. 2014 Apr;78(4):321-7 [PMID: 24445159]
  34. Front Microbiol. 2019 Dec 20;10:2900 [PMID: 31921075]
  35. Infect Dis Obstet Gynecol. 2022 Aug 13;2022:9562937 [PMID: 35996693]
  36. Anaerobe. 2010 Jun;16(3):210-5 [PMID: 19925874]
  37. Clin Microbiol Rev. 2016 Apr;29(2):223-38 [PMID: 26864580]
  38. BMC Med. 2021 Sep 2;19(1):194 [PMID: 34470644]
  39. Microb Pathog. 2021 Nov;160:105172 [PMID: 34500016]
  40. Diagn Microbiol Infect Dis. 2016 Oct;86(2):231-42 [PMID: 27431434]
  41. Front Cell Infect Microbiol. 2023 Jun 19;13:1198113 [PMID: 37404722]
  42. Eur J Obstet Gynecol Reprod Biol. 2020 Feb;245:143-148 [PMID: 31901667]
  43. Ann N Y Acad Sci. 2020 May;1467(1):21-47 [PMID: 31989644]
  44. Clin Infect Dis. 2008 Jul 1;47(1):44-6 [PMID: 18513145]
  45. NPJ Biofilms Microbiomes. 2022 May 2;8(1):34 [PMID: 35501321]
  46. Biomed Res Int. 2015;2015:645853 [PMID: 26078959]
  47. Front Cell Infect Microbiol. 2021 Jul 06;11:686167 [PMID: 34295836]
  48. Microb Cell Fact. 2020 Nov 7;19(1):203 [PMID: 33160356]
  49. N Engl J Med. 2005 Nov 3;353(18):1899-911 [PMID: 16267321]
  50. Clin Infect Dis. 2008 Jul 1;47(1):33-43 [PMID: 18513147]
  51. Microb Pathog. 2019 Feb;127:21-30 [PMID: 30502515]
  52. J Comp Eff Res. 2024 Jan;13(1):e230079 [PMID: 38099520]
  53. Cell Rep. 2024 Apr 23;43(4):114078 [PMID: 38598334]
  54. Am J Med. 1983 Jan;74(1):14-22 [PMID: 6600371]
  55. Microorganisms. 2024 Jan 05;12(1): [PMID: 38257934]
  56. Environ Microbiol Rep. 2019 Apr;11(2):62-86 [PMID: 30637962]

MeSH Term

Female
Vaginosis, Bacterial
Humans
Vagina
Microbiota
Lactobacillus
Real-Time Polymerase Chain Reaction
Adult
Gardnerella vaginalis
Young Adult
Sensitivity and Specificity
Prevotella
Megasphaera
Actinobacteria
Middle Aged
Lactobacillus crispatus
Adolescent
Bacteria
Pregnancy
RNA, Ribosomal, 16S

Chemicals

RNA, Ribosomal, 16S

Word Cloud

Created with Highcharts 10.0.0speciesBVtestsamplesvaginalbacterialnew22vaginosissampleindexusingqRT-PCRdesignedUsingqPCRrelativeabundancediagnosticBV-positiveBV-negativetransitionalwithin8hoursreceptionabundantmicrobiomestatusdifferentagegroupsracesBackground:NumerousbacteriainvolvedetiologyYetcurrenttestsfocusselectthereforetargetingBV-relevantMethods:946storedquantitativelyidentifiesdistributionα-β-diversitiescorrelationco-existencedeterminedpermodeleddatatrainedtestedclassifyResults:identifiedtargeted95-100%sensitivityspecificityAcrosssptype1relativelyBVAB-1distributedBVAB-2BVAB-3foundinter-samplesimilaritylowcorrelationsexistedkeyusedmodeltrainindex:markersclassifiedthreestatesTesting491318137AlthoughimportantdifferencesobservedpregnancystatisticallyinsignificantConclusion:diverselargenumberincludingpregnantwomenefficientlydiagnosedBV-associatedMolecularcharacterizationmicrobiota22-speciesachieverelative-abundancespecies-baseddiagnosisBVABMDL-BVmachinelearningvaginitis

Similar Articles

Cited By