Photoresponsive Multirole Nanoweapon Camouflaged by Hybrid Cell Membrane Vesicles for Efficient Antibacterial Therapy of Pseudomonas aeruginosa-Infected Pneumonia and Wound.

Hening Liu, Lu Tang, Yue Yin, Yuqi Cao, Cong Fu, Jingwen Feng, Yan Shen, Wei Wang
Author Information
  1. Hening Liu: State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, P. R. China.
  2. Lu Tang: State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, P. R. China.
  3. Yue Yin: State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, P. R. China.
  4. Yuqi Cao: State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, P. R. China.
  5. Cong Fu: State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, P. R. China.
  6. Jingwen Feng: State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, P. R. China.
  7. Yan Shen: State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, P. R. China.
  8. Wei Wang: State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, P. R. China. ORCID

Abstract

Exploring effective antibacterial approaches for targeted treatment of pathogenic bacterial infections with reduced drug resistance is of great significance. Combinational treatment modality that leverages different therapeutic components can improve the overall effectiveness and minimize adverse effects, thus displaying considerable potential against bacterial infections. Herein, red blood cell membrane fuses with macrophage membrane to develop hybrid cell membrane shell, which further camouflages around drug-loaded liposome to fabricate biomimetic liposome (AB@LRM) for precise antibacterial therapy. Specifically, photoactive agent black phosphorus quantum dots (BPQDs) and classical antibiotics amikacin (AM) are loaded in AB@LRM to accurately target the inflammatory sites through the guidance of macrophage membrane and long residence capability of red blood cell membrane, eventually exerting efficacious antibacterial activities. Besides, due to the excellent photothermal and photodynamic properties, BPQDs act as an efficient antibacterial agent when exposed to near-infrared laser irradiation, dramatically increasing the sensitivity of bacteria to antibiotics. Consequently, the synergistic sterilizing effect produced by AB@LRM further restricts bacterial resistance. Upon laser irradiation, AB@LRM shows superior anti-inflammatory and antibacterial properties in models of P. aeruginosa-infected pneumonia and wounds. Hence, this light-activatable antibacterial nanoplatform with good biocompatibility presents great potential to advance the clinical development in the treatment of bacterial infections.

Keywords

References

  1. Biomaterials. 2020 Jun;243:119936 [PMID: 32171103]
  2. Acta Biomater. 2023 Mar 15;159:247-258 [PMID: 36724864]
  3. Adv Mater. 2022 Sep;34(35):e2204765 [PMID: 35793475]
  4. Cell Prolif. 2022 Nov;55(11):e13316 [PMID: 35869570]
  5. Adv Mater. 2024 Apr;36(15):e2304774 [PMID: 37523329]
  6. Acta Pharm Sin B. 2023 Dec;13(12):4945-4962 [PMID: 38045053]
  7. Mater Today Bio. 2023 Mar 04;19:100602 [PMID: 36942311]
  8. J Control Release. 2023 Nov;363:180-200 [PMID: 37739014]
  9. Small. 2022 Jul;18(26):e2201280 [PMID: 35616035]
  10. Theranostics. 2022 Feb 21;12(5):2290-2321 [PMID: 35265211]
  11. Acta Biomater. 2023 Oct 15;170:496-506 [PMID: 37660961]
  12. Nano Lett. 2024 Feb 7;24(5):1717-1728 [PMID: 38270376]
  13. Adv Sci (Weinh). 2023 Feb;10(6):e2205093 [PMID: 36703487]
  14. Pharmaceutics. 2021 Nov 08;13(11): [PMID: 34834304]
  15. Acta Pharm Sin B. 2023 Nov;13(11):4442-4460 [PMID: 37969739]
  16. Mil Med Res. 2023 May 4;10(1):21 [PMID: 37143145]
  17. Adv Mater. 2022 Mar;34(12):e2107300 [PMID: 34865257]
  18. Acta Biomater. 2022 Oct 15;152:519-531 [PMID: 36055610]
  19. Adv Mater. 2023 Sep;35(35):e2303835 [PMID: 37384818]
  20. Bioact Mater. 2021 Aug 05;9:428-445 [PMID: 34820581]
  21. ACS Nano. 2023 Jun 27;17(12):11692-11712 [PMID: 37310363]
  22. Pharmaceutics. 2019 Jan 04;11(1): [PMID: 30621174]
  23. ACS Nano. 2024 Feb 8;: [PMID: 38332473]
  24. Nano Lett. 2024 Jun 5;24(22):6767-6777 [PMID: 38771956]
  25. Acta Biomater. 2022 Jan 1;137:199-217 [PMID: 34644613]
  26. Acta Pharm Sin B. 2024 Mar;14(3):1345-1361 [PMID: 38486995]
  27. Adv Sci (Weinh). 2024 Sep;11(35):e2403101 [PMID: 39007186]
  28. Adv Mater. 2024 May;36(21):e2312897 [PMID: 38346008]
  29. Exploration (Beijing). 2022 May 23;2(5):20210145 [PMID: 37325499]
  30. Adv Mater. 2022 Oct;34(41):e2204065 [PMID: 35962720]
  31. Asian J Pharm Sci. 2022 Jan;17(1):102-119 [PMID: 35261647]
  32. Adv Mater. 2021 Oct;33(41):e2102926 [PMID: 34396595]
  33. Adv Sci (Weinh). 2024 Apr;11(16):e2308316 [PMID: 38380506]
  34. Exploration (Beijing). 2022 Jan 25;2(1):20210171 [PMID: 37324583]
  35. ACS Nano. 2023 Mar 28;17(6):5187-5210 [PMID: 36896898]
  36. ACS Appl Mater Interfaces. 2022 Oct 19;14(41):46362-46373 [PMID: 36198018]
  37. Small. 2023 Feb;19(5):e2205528 [PMID: 36446719]
  38. Biomaterials. 2022 Oct;289:121768 [PMID: 36088676]
  39. Adv Sci (Weinh). 2022 May;9(14):e2105223 [PMID: 35274475]
  40. Pharmaceutics. 2021 Aug 27;13(9): [PMID: 34575419]
  41. Nat Commun. 2023 Nov 18;14(1):7510 [PMID: 37980361]
  42. ACS Nano. 2023 Apr 25;17(8):7394-7405 [PMID: 37009988]
  43. ACS Nano. 2018 Jun 26;12(6):5241-5252 [PMID: 29800517]
  44. Bioact Mater. 2021 Mar 01;6(9):2956-2968 [PMID: 33732966]
  45. Small. 2022 Nov;18(46):e2204377 [PMID: 36216771]
  46. Mil Med Res. 2023 Aug 23;10(1):37 [PMID: 37608335]
  47. Asian J Pharm Sci. 2024 Apr;19(2):100891 [PMID: 38584690]
  48. Nat Commun. 2021 Oct 22;12(1):6143 [PMID: 34686676]
  49. Nat Commun. 2019 Sep 24;10(1):4336 [PMID: 31551496]
  50. J Mater Chem B. 2023 Sep 27;11(37):8916-8925 [PMID: 37545365]
  51. Exploration (Beijing). 2023 Feb 05;3(1):20210117 [PMID: 37323620]
  52. Small. 2023 Apr;19(14):e2205941 [PMID: 36587967]
  53. Nano Lett. 2022 Oct 12;22(19):7882-7891 [PMID: 36169350]
  54. Exploration (Beijing). 2023 Oct 17;4(2):20230087 [PMID: 38855616]
  55. ACS Nano. 2022 Jul 26;16(7):11136-11151 [PMID: 35749223]
  56. Cancer Commun (Lond). 2022 Feb;42(2):141-163 [PMID: 35001556]

Grants

  1. JY-079/Six Talent Peaks Project in Jiangsu Province
  2. /333 High-Level Talent Development Project in Jiangsu Province
  3. 32071387/National Natural Science Foundation of China
  4. 31872756/National Natural Science Foundation of China

MeSH Term

Pseudomonas aeruginosa
Anti-Bacterial Agents
Mice
Animals
Liposomes
Pseudomonas Infections
Disease Models, Animal
Quantum Dots
Cell Membrane
Pneumonia
Amikacin

Chemicals

Anti-Bacterial Agents
Liposomes
Amikacin

Word Cloud

Created with Highcharts 10.0.0antibacterialmembranebacterialAB@LRMtreatmentinfectionscellresistancegreatpotentialredbloodmacrophageliposomebiomimetictherapyagentBPQDsantibioticspropertieslaserirradiationsynergisticPpneumoniaExploringeffectiveapproachestargetedpathogenicreduceddrugsignificanceCombinationalmodalityleveragesdifferenttherapeuticcomponentscanimproveoveralleffectivenessminimizeadverseeffectsthusdisplayingconsiderableHereinfusesdevelophybridshellcamouflagesarounddrug-loadedfabricatepreciseSpecificallyphotoactiveblackphosphorusquantumdotsclassicalamikacinAMloadedaccuratelytargetinflammatorysitesguidancelongresidencecapabilityeventuallyexertingefficaciousactivitiesBesidesdueexcellentphotothermalphotodynamicactefficientexposednear-infrareddramaticallyincreasingsensitivitybacteriaConsequentlysterilizingeffectproducedrestrictsUponshowssuperioranti-inflammatorymodelsaeruginosa-infectedwoundsHencelight-activatablenanoplatformgoodbiocompatibilitypresentsadvanceclinicaldevelopmentPhotoresponsiveMultiroleNanoweaponCamouflagedHybridCellMembraneVesiclesEfficientAntibacterialTherapyPseudomonasaeruginosa-InfectedPneumoniaWoundaeruginosananomedicinewoundinfection

Similar Articles

Cited By (3)