Treatment techniques and resource recovery of source-separated urine: a bibliometric analysis and literature review.

Zhonghong Li, Xiaoguang Li
Author Information
  1. Zhonghong Li: Basin Research Center for Water Pollution Control, Chinese Research Academy of Environment Sciences, Beijing 10012, China; School Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China.
  2. Xiaoguang Li: Basin Research Center for Water Pollution Control, Chinese Research Academy of Environment Sciences, Beijing 10012, China E-mail: lixiaoguang@craes.org.cn.

Abstract

Human urine, which is high in nutrients, acts as a resource as well as a contaminant. Indiscriminate urine discharge causes environmental pollution and wastes resources. To elucidate the research status and developmental trajectory of source-separated urine (SSU) treatment and recovery, this study was based on the Web of Science Core Collection (WOSCC) database and used the bibliometric software VOSviewer and CiteSpace to conduct a comprehensive and in-depth bibliometric analysis of the related literature in this field. The findings revealed a general upward trend in SSU treatment and recovery from 2000 to 2023. The compendium of 894 scholarly articles predominantly focused on the disciplines of Environmental Sciences, Environmental Engineering, and Water Resources. China and the USA emerged as the foremost contributors. Keyword co-occurrence mapping, clustering, and burst analysis have shown that the recovery of nitrogen and phosphorus from urine is currently the main focus, with future prospects leaning toward the retrieval of biochemicals and chemical energy. This study systematically categorizes and compares the developmental status, current advancements, and research progress in this field. The findings of this study provide a valuable reference for understanding developmental pathways in this field of research.

Keywords

References

  1. Almuntashiri A., Hosseinzadeh A., Badeti U., Shon H., Freguia S., Dorji U. & Phuntsho S. 2022 Removal of pharmaceutical compounds from synthetic hydrolysed urine using granular activated carbon: Column study and predictive modelling. Journal of Water Process Engineering 45, 102480.
  2. Anawati J. & Azimi G. 2020 Recovery and separation of phosphorus as dicalcium phosphate dihydrate for fertilizer and livestock feed additive production from a low-grade phosphate ore. RSC Advances 10 (63), 38640–38653. [>PMCID: ]
  3. Barbosa S. G., Peixoto L., Meulman B., Alves M. M. & Pereira M. A. 2016 A design of experiments to assess phosphorous removal and crystal properties in struvite precipitation of source separated urine using different Mg sources. Chemical Engineering Journal 298, 146–153.
  4. Barragán Ocaña A., Silva Borjas P. & Olmos Peña S. 2021 Scientific and technological trajectory in the recovery of value-added products from wastewater: A general approach. Journal of Water Process Engineering 39, 101692.
  5. Bashir M. F., Ma B., Bashir M. A. & Bilal Shahzad L. 2021 Scientific data-driven evaluation of academic publications on environmental Kuznets curve. Environmental Science and Pollution Research 28, 16982–16999.
  6. Chen C. 2006 Citespace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. Journal of the American Society for Information Science and Technology 57 (3), 359–377.
  7. Chen X., Liu M., Xie B., Chen L. & Wei J. 2021 Characterization of top 100 researches on e-waste based on bibliometric analysis. Environmental Science and Pollution Research 28, 61568–61580. [PMID: 34184220]
  8. Cheng Y., Huang T., Shi X., Wen G. & Sun Y. 2017 Removal of ammonium ion from water by Na-rich birnessite: Performance and mechanisms. Journal of Environmental Sciences 57, 402–410.
  9. Clark B. & Tarpeh W. A. 2020 Selective recovery of ammonia nitrogen from wastewaters with transition metal-loaded polymeric cation exchange adsorbents. Chemistry – A European Journal 26 (44), 10099–10112.
  10. De Paepe J., De Pryck L., Verliefde A. R., Rabaey K. & Clauwaert P. 2020 Electrochemically induced precipitation enables fresh urine stabilization and facilitates source separation. Environmental Science & Technology 54 (6), 3618–3627.
  11. El Gheriany I., Abdel-Aziz M. H., El-Ashtoukhy E.-S. Z. & Sedahmed G. H. 2022 Electrochemical removal of urea from wastewater by anodic oxidation using a new cell design: An experimental and modeling study. Process Safety and Environmental Protection 159, 133–145.
  12. Etter B., Tilley E., Khadka R. & Udert K. M. 2011 Low-cost struvite production using source-separated urine in Nepal. Water Research 45 (2), 852–862. [PMID: 20980038]
  13. Fasoli E., Righetti P. G., Moltrasio D. & D'Amato A. 2015 Extensive heterogeneity of human urokinase, as detected by two-dimensional mapping. Analytical Chemistry 87 (3), 1509–1513. [PMID: 25525926]
  14. Gao Y., Sun D., Wang H., Lu L., Ma H., Wang L., Ren Z. J., Liang P., Zhang X. & Chen X. 2018 Urine-powered synergy of nutrient recovery and urine purification in a microbial electrochemical system. Environmental Science: Water Research & Technology 4 (10), 1427–1438.
  15. Gau C., Sato S., Zhang D., Ishibashi Y. & Kobayashi J. 2022 Recovering nutrients and rejecting trace organic compounds in human urine by a forward osmosis–membrane distillation (FO–MD) hybrid system. Water Science & Technology 86 (8), 1904–1914.
  16. Guida S., Conzelmann L., Remy C., Vale P., Jefferson B. & Soares A. 2021 Resilience and life cycle assessment of ion exchange process for ammonium removal from municipal wastewater. Science of the Total Environment 783, 146834. [PMID: 33862397]
  17. Höglund C., Ashbolt N., Stenström T. A. & Svensson L. 2002a Viral persistence in source-separated human urine. Advances in Environmental Research 6 (3), 265–275.
  18. Höglund C., Stenström T. A. & Ashbolt N. 2002b Microbial risk assessment of source-separated urine used in agriculture. Waste Management & Research 20 (2), 150–161.
  19. Hu Y., Zhu Q., Wang Y., Liao C. & Jiang G. 2022 A short review of human exposure to antibiotics based on urinary biomonitoring. Science of The Total Environment 830, 154775. [PMID: 35339554]
  20. Huang P., Mukherji S. T., Wu S., Muller J. & Goel R. 2016 Fate of 17-Estradiol as a model estrogen in source separated urine during integrated chemical P recovery and treatment using partial nitritation-anammox process. Water Research 103, 500–509. [PMID: 27566951]
  21. Huang J., Wu X., Ling S., Li X., Wu Y., Peng L. & He Z. 2022 A bibliometric and content analysis of research trends on GIS-based landslide susceptibility from 2001 to 2020. Environmental Science and Pollution Research 29 (58), 86954–86993. [PMID: 36279056]
  22. Ieropoulos I. A., Greenman J. & Melhuish C. 2013 Miniature microbial fuel cells and stacks for urine utilisation. International Journal of Hydrogen Energy 38 (1), 492–496.
  23. Jaatinen S., Lakaniemi A.-M. & Rintala J. 2016 Use of diluted urine for cultivation of . Environmental Technology 37 (9), 1159–1170. [PMID: 26508358]
  24. Jiang X., Sun Y., Qu Y., Zeng H., Yang J., Zhang K. & Liu L. 2023 The development and future frontiers of global ecological restoration projects in the twenty-first century: A systematic review based on scientometrics. Environmental Science and Pollution Research 30 (12), 32230–32245. [PMID: 36735127]
  25. Kong L., Mu X., Hu G. & Zhang Z. 2022 The application of resilience theory in urban development: A literature review. Environmental Science and Pollution Research 29 (33), 49651–49671. [>PMCID: ]
  26. Koulouri M. E., Templeton M. R. & Fowler G. D. 2023 Source separation of human excreta: Effect on resource recovery via pyrolysis. Journal of Environmental Management 338, 117782. [PMID: 37015142]
  27. Kuah C. T., Koh Q. Y., Rajoo S. & Wong K. Y. 2023 Waste heat recovery research – a systematic bibliometric analysis (1991 to 2020). Environmental Science and Pollution Research 30 (28), 72074–72100. [>PMCID: ]
  28. Kuntke P., Rodríguez Arredondo M., Widyakristi L., Ter Heijne A., Sleutels T. H., Hamelers H. V. & Buisman C. J. 2017 Hydrogen gas recycling for energy efficient ammonia recovery in electrochemical systems. Environmental Science & Technology 51 (5), 3110–3116.
  29. Lahr R. H., Goetsch H. E., Haig S. J., Noe-Hays A., Love N. G., Aga D. S., Bott C. B., Foxman B., Jimenez J. & Luo T. 2016 Urine bacterial community convergence through fertilizer production: Storage, pasteurization, and struvite precipitation. Environmental Science & Technology 50 (21), 11619–11626.
  30. Larsen T. A., Riechmann M. E. & Udert K. M. 2021 State of the art of urine treatment technologies: A critical review. Water Research X 13, 100114. [>PMCID: ]
  31. Li X., Zhao X., Zhang J., Hao J. & Zhang Q. 2022 Struvite crystallization by using active serpentine: An innovative application for the economical and efficient recovery of phosphorus from black water. Water Research 221, 118678. [PMID: 35752092]
  32. Liu B., Giannis A., Zhang J., Chang V. W. C. & Wang J. Y. 2015 Air stripping process for ammonia recovery from source-separated urine: Modeling and optimization. Journal of Chemical Technology & Biotechnology 90 (12), 2208–2217.
  33. Liu Y., Zhang Q., He L. F., Ran Y., Deng Y. Y. & Liu H. 2023 Insights into the promotion of urine-diverting toilets based on the fertilizer efficiency of artificial phosphate ore recovered from source-separated urine. Resources, Conservation and Recycling 190, 106807.
  34. Lv Y., Li Z., Zhou X., Cheng S. & Zheng L. 2020 Stabilization of source-separated urine by heat-activated peroxydisulfate. Science of the Total Environment 749, 142213. [>PMCID: ]
  35. Martin T. M., Esculier F., Levavasseur F. & Houot S. 2022 Human urine-based fertilizers: A review. Critical Reviews in Environmental Science and Technology 52 (6), 890–936.
  36. Masrura S. U., Dissanayake P., Sun Y., Ok Y. S., Tsang D. C. & Khan E. 2021 Sustainable use of biochar for resource recovery and pharmaceutical removal from human urine: A critical review. Critical Reviews in Environmental Science and Technology 51 (24), 3016–3048.
  37. Maurer M., Schwegler P. & Larsen T. 2003 Nutrients in urine: Energetic aspects of removal and recovery. Water Science & Technology 48 (1), 37–46.
  38. Maurer M., Pronk W. & Larsen T. 2006 Treatment processes for source-separated urine. Water Research 40 (17), 3151–3166. [PMID: 16949123]
  39. Merino-Jimenez I., Celorrio V., Fermin D. J., Greenman J. & Ieropoulos I. 2017 Enhanced MFC power production and struvite recovery by the addition of sea salts to urine. Water Research 109, 46–53. [>PMCID: ]
  40. Mihelcic J. R., Fry L. M. & Shaw R. 2011 Global potential of phosphorus recovery from human urine and feces. Chemosphere 84 (6), 832–839. [PMID: 21429554]
  41. Otieno A. O., Home P. G., Raude J. M., Murunga S. I., Ngumba E., Ojwang D. O. & Tuhkanen T. 2021 Pineapple peel biochar and lateritic soil as adsorbents for recovery of ammonium nitrogen from human urine. Journal of Environmental Management 293, 112794. [PMID: 34038825]
  42. Patel A., Mungray A. A. & Mungray A. K. 2020 Technologies for the recovery of nutrients, water and energy from human urine: A review. Chemosphere 259, 127372. [PMID: 32599379]
  43. Roy M. A., Sharma S., Braunius K. P., Ajmani A. M., Keyser A. D., Butler C. S., Reckhow D. A. & Dhankher O. P. 2022 Lime-treated urine improves sunflower growth without shifting soil bacterial communities. Applied Soil Ecology 178, 104575.
  44. Santoro C., Ieropoulos I., Greenman J., Cristiani P., Vadas T., Mackay A. & Li B. 2013 Current generation in membraneless single chamber microbial fuel cells (MFCs) treating urine. Journal of Power Sources 238, 190–196.
  45. Saravanan P., Rajeswari S., Kumar J. A., Rajasimman M. & Rajamohan N. 2022 Bibliometric analysis and recent trends on MXene research – a comprehensive review. Chemosphere 286, 131873. [PMID: 34411934]
  46. Shrestha D., Srivastava A., Shakya S. M., Khadka J. & Acharya B. S. 2013 Use of compost supplemented human urine in sweet pepper ( L.) production. Scientia Horticulturae 153, 8–12.
  47. Simha P., Vasiljev A., Randall D. G. & Vinnerås B. 2023 Factors influencing the recovery of organic nitrogen from fresh human urine dosed with organic/inorganic acids and concentrated by evaporation in ambient conditions. Science of The Total Environment 879, 163053. [PMID: 36966823]
  48. Tang F. H. & Maggi F. 2016 Breakdown, uptake and losses of human urine chemical compounds in barley () and soybean () agricultural plots: Effectiveness of human urine use in agriculture. Nutrient Cycling in Agroecosystems 104, 221–245.
  49. Tarpeh W. A., Udert K. M. & Nelson K. L. 2017 Comparing ion exchange adsorbents for nitrogen recovery from source-separated urine. Environmental Science & Technology 51 (4), 2373–2381.
  50. Udert K. & Wächter M. 2012 Complete nutrient recovery from source-separated urine by nitrification and distillation. Water Research 46 (2), 453–464. [PMID: 22119369]
  51. Van Eck N. & Waltman L. 2010 Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 84 (2), 523–538. [>PMCID: ]
  52. Volpin F., Chekli L., Phuntsho S., Ghaffour N., Vrouwenvelder J. S. & Shon H. K. 2019a Optimisation of a forward osmosis and membrane distillation hybrid system for the treatment of source-separated urine. Separation and Purification Technology 212, 368–375.
  53. Volpin F., Heo H., Johir M. A. H., Cho J., Phuntsho S. & Shon H. K. 2019b Techno-economic feasibility of recovering phosphorus, nitrogen and water from dilute human urine via forward osmosis. Water Research 150, 47–55. [PMID: 30503874]
  54. Wang Z., Zhou Z., Xu W., Yang D., Xu Y., Yang L., Ren J., Li Y. & Huang Y. 2021 Research status and development trends in the field of marine environment corrosion: A new perspective. Environmental Science and Pollution Research 28 (39), 54403–54428. [PMID: 34406565]
  55. Wilsenach J., Schuurbiers C. & Van Loosdrecht M. 2007 Phosphate and potassium recovery from source separated urine through struvite precipitation. Water Research 41 (2), 458–366. [PMID: 17126877]
  56. Xiao P., Wu D. & Wang J. 2022 Bibliometric analysis of global research on white rot fungi biotechnology for environmental application. Environmental Science and Pollution Research 29, 1491–1507. [>PMCID: ]
  57. Xu X. & Feng C. 2021 Mapping the knowledge domain of the evolution of emergy theory: A bibliometric approach. Environmental Science and Pollution Research 28 (32), 43114–43142. [PMID: 34152539]
  58. Xu N., Wang L., Dou N., Zhang L., Guan J., Chang Y. & Li R. 2019 Foam fractionation for enhancing silica gel adsorption of urokinase from human urine. Asia-Pacific Journal of Chemical Engineering 14 (4), e2334.
  59. You J., Greenman J., Melhuish C. & Ieropoulos I. 2016 Electricity generation and struvite recovery from human urine using microbial fuel cells. Journal of Chemical Technology & Biotechnology 91 (3), 647–654.
  60. Zang G. L., Sheng G. P., Li W. W., Tong Z. H., Zeng R. J., Shi C. & Yu H. Q. 2012 Nutrient removal and energy production in a urine treatment process using magnesium ammonium phosphate precipitation and a microbial fuel cell technique. Physical Chemistry Chemical Physics 14 (6), 1978–1984. [PMID: 22234416]
  61. Zhang R., Li Y., Wang Z., Tong Y. & Sun P. 2020a Biochar-activated peroxydisulfate as an effective process to eliminate pharmaceutical and metabolite in hydrolyzed urine. Water Research 177, 115809. [PMID: 32311579]
  62. Zhang Y., Aguila B., Ma S. & Zhang Q. 2020b Comparison of the use of functional porous organic polymer (POP) and natural material zeolite for nitrogen removal and recovery from source-separated urine. Journal of Environmental Chemical Engineering 8 (5), 104296.
  63. Zhang Y., Li C., Ji X., Yun C., Wang M. & Luo X. 2020c The knowledge domain and emerging trends in phytoremediation: A scientometric analysis with CiteSpace. Environmental Science and Pollution Research 27, 15515–15536. [PMID: 32078132]
  64. Zhang J., Li K., Xie M., Han Q., Feng L., Qu D., Zhang L. & Wang K. 2023a A new insight into the low membrane fouling tendency of liquid-liquid hollow fiber membrane contactor capturing ammonia from human urine. Water Research 233, 119795. [PMID: 36871380]
  65. Zhang Y., Chen Z., Huang G. & Yang M. 2023b Origins of groundwater nitrate in a typical alluvial-pluvial plain of North China plain: New insights from groundwater age-dating and isotopic fingerprinting. Environmental Pollution 316, 120592. [PMID: 36336180]
  66. Zhou Y., Wei X., Huang L. & Wang H. 2023 Worldwide research on extraction and recovery of cobalt through bibliometric analysis: A review. Environmental Science and Pollution Research 30 (7), 16930–16946. [PMID: 36607578]
  67. Zhu L., Dong D., Hua X., Xu Y., Guo Z. & Liang D. 2017 Ammonia nitrogen removal and recovery from acetylene purification wastewater by air stripping. Water Science & Technology 75 (11), 2538–2545.
  68. Zuo Z., Chen Y., Xing Y., Li S., Yang S., Jiang G., Liu T., Zheng M., Huang X. & Liu Y. 2023 The advantage of a two-stage nitrification method for fertilizer recovery from human urine. Water Research 235, 119932. [PMID: 37011577]

Grants

  1. No.2023YFE0113103/the National Key Research and Development Project of China

MeSH Term

Bibliometrics
Urine
Humans
Waste Disposal, Fluid

Word Cloud

Created with Highcharts 10.0.0recoveryurinebibliometricresearchdevelopmentalsource-separatedstudyanalysisfieldresourcestatusSSUtreatmentliteraturefindingsEnvironmentalnitrogenphosphorusHumanhighnutrientsactswellcontaminantIndiscriminatedischargecausesenvironmentalpollutionwastesresourceselucidatetrajectorybasedWebScienceCoreCollectionWOSCCdatabaseusedsoftwareVOSviewerCiteSpaceconductcomprehensivein-depthrelatedrevealedgeneralupwardtrend20002023compendium894scholarlyarticlespredominantlyfocuseddisciplinesSciencesEngineeringWaterResourcesChinaUSAemergedforemostcontributorsKeywordco-occurrencemappingclusteringburstshowncurrentlymainfocusfutureprospectsleaningtowardretrievalbiochemicalschemicalenergysystematicallycategorizescomparescurrentadvancementsprogressprovidevaluablereferenceunderstandingpathwaysTreatmenttechniquesurine:reviewagriculturalutilizationnutrient

Similar Articles

Cited By