Dual roles of myeloid-derived suppressor cells in various diseases: a review.

Mahesh Raj Nepal, Sajita Shah, Kyu-Tae Kang
Author Information
  1. Mahesh Raj Nepal: College of Pharmacy, Duksung Women's University, Seoul, South Korea.
  2. Sajita Shah: College of Pharmacy, Duksung Women's University, Seoul, South Korea.
  3. Kyu-Tae Kang: College of Pharmacy, Duksung Women's University, Seoul, South Korea. ktkang@duksung.ac.kr. ORCID

Abstract

Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of cells that originate from bone marrow stem cells. In pathological conditions, such as autoimmune disorders, allergies, infections, and cancer, normal myelopoiesis is altered to facilitate the formation of MDSCs. MDSCs were first shown to promote cancer initiation and progression by immunosuppression with the assistance of various chemokines and cytokines. Recently, various studies have demonstrated that MDSCs play two distinct roles depending on the physiological and pathological conditions. MDSCs have protective roles in autoimmune disorders (such as uveoretinitis, multiple sclerosis, rheumatoid arthritis, ankylosing spondylitis, type 1 diabetes, autoimmune hepatitis, inflammatory bowel disease, alopecia areata, and systemic lupus erythematosus), allergies, and organ transplantation. However, they play negative roles in infections and various cancers. Several immunosuppressive functions and mechanisms of MDSCs have been determined in different disease conditions. This review comprehensively discusses the associations between MDSCs and various pathological conditions and briefly describes therapeutic approaches.

Keywords

References

  1. An J, Feng L, Ren J, Li Y, Li G, Liu C, Yao Y, Yao Y, Jiang Z, Gao Y, Xu Y, Wang Y, Li J, Liu J, Cao L, Qi Z, Yang L (2021) Chronic stress promotes breast carcinoma metastasis by accumulating myeloid-derived suppressor cells through activating beta-adrenergic signaling. Oncoimmunology 10(1):2004659. https://doi.org/10.1080/2162402X.2021.2004659 [DOI: 10.1080/2162402X.2021.2004659]
  2. Apte RN, Voronov E (2008) Is interleukin-1 a good or bad “guy” in tumor immunobiology and immunotherapy? Immunol Rev 222:222–241. https://doi.org/10.1111/j.1600-065X.2008.00615.x [DOI: 10.1111/j.1600-065X.2008.00615.x]
  3. Arora M, Poe SL, Ray A, Ray P (2011) LPS-induced CD11b+Gr1(int)F4/80+ regulatory myeloid cells suppress allergen-induced airway inflammation. Int Immunopharmacol 11(7):827–832. https://doi.org/10.1016/j.intimp.2011.01.034 [DOI: 10.1016/j.intimp.2011.01.034]
  4. Awad RM, De Vlaeminck Y, Maebe J, Goyvaerts C, Breckpot K (2018) Turn back the TIMe: targeting tumor infiltrating myeloid cells to revert cancer progression. Front Immunol 9:1977. https://doi.org/10.3389/fimmu.2018.01977 [DOI: 10.3389/fimmu.2018.01977]
  5. Ba H, Li B, Li X, Li C, Feng A, Zhu Y, Wang J, Li Z, Yin B (2017) Transmembrane tumor necrosis factor-alpha promotes the recruitment of MDSCs to tumor tissue by upregulating CXCR4 expression via TNFR2. Int Immunopharmacol 44:143–152. https://doi.org/10.1016/j.intimp.2016.12.028 [DOI: 10.1016/j.intimp.2016.12.028]
  6. Barreda DR, Hanington PC, Belosevic M (2004) Regulation of myeloid development and function by colony stimulating factors. Dev Comp Immunol 28(5):509–554. https://doi.org/10.1016/j.dci.2003.09.010 [DOI: 10.1016/j.dci.2003.09.010]
  7. Bekic M, Tomic S (2023) Myeloid-derived suppressor cells in the therapy of autoimmune diseases. Eur J Immunol 53(12):e2250345. https://doi.org/10.1002/eji.202250345 [DOI: 10.1002/eji.202250345]
  8. Binsfeld M, Muller J, Lamour V, De Veirman K, De Raeve H, Bellahcene A, Van Valckenborgh E, Baron F, Beguin Y, Caers J, Heusschen R (2016) Granulocytic myeloid-derived suppressor cells promote angiogenesis in the context of multiple myeloma. Oncotarget 7(25):37931–37943. https://doi.org/10.18632/oncotarget.9270 [DOI: 10.18632/oncotarget.9270]
  9. Bitsch R, Kurzay A, Ozbay Kurt F, De La Torre C, Lasser S, Lepper A, Siebenmorgen A, Muller V, Altevogt P, Utikal J, Umansky V (2022) STAT3 inhibitor Napabucasin abrogates MDSC immunosuppressive capacity and prolongs survival of melanoma-bearing mice. J Immunother Cancer. https://doi.org/10.1136/jitc-2021-004384 [DOI: 10.1136/jitc-2021-004384]
  10. Bronte V, Brandau S, Chen SH, Colombo MP, Frey AB, Greten TF, Mandruzzato S, Murray PJ, Ochoa A, Ostrand-Rosenberg S, Rodriguez PC, Sica A, Umansky V, Vonderheide RH, Gabrilovich DI (2016) Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards. Nat Commun 7:12150. https://doi.org/10.1038/ncomms12150 [DOI: 10.1038/ncomms12150]
  11. Bruno A, Mortara L, Baci D, Noonan DM, Albini A (2019) Myeloid derived suppressor cells interactions with natural killer cells and pro-angiogenic activities: roles in tumor progression. Front Immunol 10:771. https://doi.org/10.3389/fimmu.2019.00771 [DOI: 10.3389/fimmu.2019.00771]
  12. Bunt SK, Yang L, Sinha P, Clements VK, Leips J, Ostrand-Rosenberg S (2007) Reduced inflammation in the tumor microenvironment delays the accumulation of myeloid-derived suppressor cells and limits tumor progression. Cancer Res 67(20):10019–10026. https://doi.org/10.1158/0008-5472.can-07-2354 [DOI: 10.1158/0008-5472.can-07-2354]
  13. Cadamuro M, Brivio S, Spirli C, Joplin RE, Strazzabosco M, Fabris L (2017) Autocrine and paracrine mechanisms promoting chemoresistance in cholangiocarcinoma. Int J Mol Sci 18(1):149. https://doi.org/10.3390/ijms18010149 [DOI: 10.3390/ijms18010149]
  14. Cantoni C, Ghezzi L, Choi J, Cross AH, Piccio L (2023) Targeting miR-223 enhances myeloid-derived suppressor cell suppressive activities in multiple sclerosis patients. Mult Scler Relat Disord 76:104839. https://doi.org/10.1016/j.msard.2023.104839 [DOI: 10.1016/j.msard.2023.104839]
  15. Cassetta L, Baekkevold ES, Brandau S, Bujko A, Cassatella MA, Dorhoi A, Krieg C, Lin A, Loré K, Marini O, Pollard JW, Roussel M, Scapini P, Umansky V, Adema GJ (2019) Deciphering myeloid-derived suppressor cells: isolation and markers in humans, mice and non-human primates. Cancer Immunol Immunother 68(4):687–697. https://doi.org/10.1007/s00262-019-02302-2 [DOI: 10.1007/s00262-019-02302-2]
  16. Chen S, Akbar SM, Abe M, Hiasa Y, Onji M (2011) Immunosuppressive functions of hepatic myeloid-derived suppressor cells of normal mice and in a murine model of chronic hepatitis B virus. Clin Exp Immunol 166(1):134–142. https://doi.org/10.1111/j.1365-2249.2011.04445.x [DOI: 10.1111/j.1365-2249.2011.04445.x]
  17. Chen W, Ma T, Shen XN, Xia XF, Xu GD, Bai XL, Liang TB (2012) Macrophage-induced tumor angiogenesis is regulated by the TSC2-mTOR pathway. Cancer Res 72(6):1363–1372. https://doi.org/10.1158/0008-5472.can-11-2684 [DOI: 10.1158/0008-5472.can-11-2684]
  18. Chen S, Guo C, Wang R, Feng Z, Liu Z, Wu L, Zhao D, Zheng S, Chen F, Zhang D, Xu J, Zhu J, Chen X, Li Z, Wise CM, Li J, Wang XY (2021) Monocytic MDSCs skew Th17 cells toward a pro-osteoclastogenic phenotype and potentiate bone erosion in rheumatoid arthritis. Rheumatology (Oxford) 60(5):2409–2420. https://doi.org/10.1093/rheumatology/keaa625 [DOI: 10.1093/rheumatology/keaa625]
  19. Cheng L, Wang J, Li X, Xing Q, Du P, Su L, Wang S (2011) Interleukin-6 induces Gr-1+CD11b+ myeloid cells to suppress CD8+ T cell-mediated liver injury in mice. PLoS ONE 6(3):e17631–e17631. https://doi.org/10.1371/journal.pone.0017631 [DOI: 10.1371/journal.pone.0017631]
  20. Chesney JA, Mitchell RA, Yaddanapudi K (2017) Myeloid-derived suppressor cells-a new therapeutic target to overcome resistance to cancer immunotherapy. J Leukoc Biol 102(3):727–740. https://doi.org/10.1189/jlb.5VMR1116-458RRR [DOI: 10.1189/jlb.5VMR1116-458RRR]
  21. Choi JN, Sun EG, Cho SH (2019) IL-12 enhances immune response by modulation of myeloid derived suppressor cells in tumor microenvironment. Chonnam Med J 55(1):31–39. https://doi.org/10.4068/cmj.2019.55.1.31 [DOI: 10.4068/cmj.2019.55.1.31]
  22. Condamine T, Gabrilovich DI (2011) Molecular mechanisms regulating myeloid-derived suppressor cell differentiation and function. Trends Immunol 32(1):19–25. https://doi.org/10.1016/j.it.2010.10.002 [DOI: 10.1016/j.it.2010.10.002]
  23. Condamine T, Ramachandran I, Youn JI, Gabrilovich DI (2015) Regulation of tumor metastasis by myeloid-derived suppressor cells. Annu Rev Med 66:97–110. https://doi.org/10.1146/annurev-med-051013-052304 [DOI: 10.1146/annurev-med-051013-052304]
  24. Consonni FM, Porta C, Marino A, Pandolfo C, Mola S, Bleve A, Sica A (2019) Myeloid-derived suppressor cells: ductile targets in disease. Front Immunol 10:949. https://doi.org/10.3389/fimmu.2019.00949 [DOI: 10.3389/fimmu.2019.00949]
  25. Corzo CA, Cotter MJ, Cheng P, Cheng F, Kusmartsev S, Sotomayor E, Padhya T, McCaffrey TV, McCaffrey JC, Gabrilovich DI (2009) Mechanism regulating reactive oxygen species in tumor-induced myeloid-derived suppressor cells. J Immunol 182(9):5693–5701. https://doi.org/10.4049/jimmunol.0900092 [DOI: 10.4049/jimmunol.0900092]
  26. Cripps JG, Wang J, Maria A, Blumenthal I, Gorham JD (2010) Type 1 T helper cells induce the accumulation of myeloid-derived suppressor cells in the inflamed Tgfb1 knockout mouse liver. Hepatology 52(4):1350–1359. https://doi.org/10.1002/hep.23841 [DOI: 10.1002/hep.23841]
  27. Decock J, Thirkettle S, Wagstaff L, Edwards DR (2011) Matrix metalloproteinases: protective roles in cancer. J Cell Mol Med 15(6):1254–1265. https://doi.org/10.1111/j.1582-4934.2011.01302.x [DOI: 10.1111/j.1582-4934.2011.01302.x]
  28. Deng Z, Rong Y, Teng Y, Zhuang X, Samykutty A, Mu J, Zhang L, Cao P, Yan J, Miller D, Zhang HG (2017) Exosomes miR-126a released from MDSC induced by DOX treatment promotes lung metastasis. Oncogene 36(5):639–651. https://doi.org/10.1038/onc.2016.229 [DOI: 10.1038/onc.2016.229]
  29. Dinarello CA (2009) Immunological and inflammatory functions of the interleukin-1 family. Annu Rev Immunol 27:519–550. https://doi.org/10.1146/annurev.immunol.021908.132612 [DOI: 10.1146/annurev.immunol.021908.132612]
  30. Dolcetti L, Peranzoni E, Ugel S, Marigo I, Fernandez Gomez A, Mesa C, Geilich M, Winkels G, Traggiai E, Casati A, Grassi F, Bronte V (2010) Hierarchy of immunosuppressive strength among myeloid-derived suppressor cell subsets is determined by GM-CSF. Eur J Immunol 40(1):22–35. https://doi.org/10.1002/eji.200939903 [DOI: 10.1002/eji.200939903]
  31. Draghiciu O, Lubbers J, Nijman HW, Daemen T (2015) Myeloid derived suppressor cells-an overview of combat strategies to increase immunotherapy efficacy. Oncoimmunology 4(1):e954829–e954829. https://doi.org/10.4161/21624011.2014.954829 [DOI: 10.4161/21624011.2014.954829]
  32. du Plessis N, Loebenberg L, Kriel M, von Groote-Bidlingmaier F, Ribechini E, Loxton AG, van Helden PD, Lutz MB, Walzl G (2013) Increased frequency of myeloid-derived suppressor cells during active tuberculosis and after recent mycobacterium tuberculosis infection suppresses T-cell function. Am J Respir Crit Care Med 188(6):724–732. https://doi.org/10.1164/rccm.201302-0249OC [DOI: 10.1164/rccm.201302-0249OC]
  33. Dugast AS, Haudebourg T, Coulon F, Heslan M, Haspot F, Poirier N, Vuillefroy de Silly R, Usal C, Smit H, Martinet B, Thebault P, Renaudin K, Vanhove B (2008) Myeloid-derived suppressor cells accumulate in kidney allograft tolerance and specifically suppress effector T cell expansion. J Immunol 180(12):7898–7906. https://doi.org/10.4049/jimmunol.180.12.7898 [DOI: 10.4049/jimmunol.180.12.7898]
  34. Eckert I, Ribechini E, Lutz MB (2021) In vitro generation of murine myeloid-derived suppressor cells, analysis of markers, developmental commitment, and function. Methods Mol Biol 2236:99–114. https://doi.org/10.1007/978-1-0716-1060-2_10 [DOI: 10.1007/978-1-0716-1060-2_10]
  35. Elkabets M, Ribeiro VS, Dinarello CA, Ostrand-Rosenberg S, Di Santo JP, Apte RN, Vosshenrich CA (2010) IL-1beta regulates a novel myeloid-derived suppressor cell subset that impairs NK cell development and function. Eur J Immunol 40(12):3347–3357. https://doi.org/10.1002/eji.201041037 [DOI: 10.1002/eji.201041037]
  36. Enioutina EY, Bareyan D, Daynes RA (2011) A role for immature myeloid cells in immune senescence. J Immunol 186(2):697–707. https://doi.org/10.4049/jimmunol.1002987 [DOI: 10.4049/jimmunol.1002987]
  37. Eriksson E, Wenthe J, Irenaeus S, Loskog A, Ullenhag G (2016) Gemcitabine reduces MDSCs, tregs and TGFbeta-1 while restoring the teff/treg ratio in patients with pancreatic cancer. J Transl Med 14(1):282. https://doi.org/10.1186/s12967-016-1037-z [DOI: 10.1186/s12967-016-1037-z]
  38. Flavell RA, Sanjabi S, Wrzesinski SH, Licona-Limon P (2010) The polarization of immune cells in the tumour environment by TGFbeta. Nat Rev Immunol 10(8):554–567. https://doi.org/10.1038/nri2808 [DOI: 10.1038/nri2808]
  39. Franchi L, Stoolman J, Kanneganti TD, Verma A, Ramphal R, Nunez G (2007) Critical role for Ipaf in Pseudomonas aeruginosa-induced caspase-1 activation. Eur J Immunol 37(11):3030–3039. https://doi.org/10.1002/eji.200737532 [DOI: 10.1002/eji.200737532]
  40. Fujii W, Ashihara E, Hirai H, Nagahara H, Kajitani N, Fujioka K, Murakami K, Seno T, Yamamoto A, Ishino H, Kohno M, Maekawa T, Kawahito Y (2013) Myeloid-derived suppressor cells play crucial roles in the regulation of mouse collagen-induced arthritis. J Immunol 191(3):1073–1081. https://doi.org/10.4049/jimmunol.1203535 [DOI: 10.4049/jimmunol.1203535]
  41. Gabrilovich DI (2014) Editorial: the intricacy of choice: can bacteria decide what type of myeloid cells to stimulate? J Leukoc Biol 96(5):671–674. https://doi.org/10.1189/jlb.4CE0514-271R [DOI: 10.1189/jlb.4CE0514-271R]
  42. Gabrilovich DI (2017) Myeloid-derived suppressor cells. cancer. Immunol Res 5(1):3–8. https://doi.org/10.1158/2326-6066.CIR-16-0297 [DOI: 10.1158/2326-6066.CIR-16-0297]
  43. Gabrilovich DI, Nagaraj S (2009) Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 9(3):162–174. https://doi.org/10.1038/nri2506 [DOI: 10.1038/nri2506]
  44. Gabrilovich DI, Ostrand-Rosenberg S, Bronte V (2012) Coordinated regulation of myeloid cells by tumours. Nat Rev Immunol 12(4):253–268. https://doi.org/10.1038/nri3175 [DOI: 10.1038/nri3175]
  45. Gao X, Sui H, Zhao S, Gao X, Su Y, Qu P (2020) Immunotherapy targeting myeloid-derived suppressor cells (MDSCs) in tumor microenvironment. Front Immunol 11:585214. https://doi.org/10.3389/fimmu.2020.585214 [DOI: 10.3389/fimmu.2020.585214]
  46. Garcia MR, Ledgerwood L, Yang Y, Xu J, Lal G, Burrell B, Ma G, Hashimoto D, Li Y, Boros P, Grisotto M, van Rooijen N, Matesanz R, Tacke F, Ginhoux F, Ding Y, Chen SH, Randolph G, Merad M, Bromberg JS, Ochando JC (2010) Monocytic suppressive cells mediate cardiovascular transplantation tolerance in mice. J Clin Invest 120(7):2486–2496. https://doi.org/10.1172/JCI41628 [DOI: 10.1172/JCI41628]
  47. Gato-Cañas M, Martinez de Morentin X, Blanco-Luquin I, Fernandez-Irigoyen J, Zudaire I, Liechtenstein T, Arasanz H, Lozano T, Casares N, Chaikuad A, Knapp S, Guerrero-Setas D, Escors D, Kochan G, Santamaría E (2015) A core of kinase-regulated interactomes defines the neoplastic MDSC lineage. Oncotarget 6(29):27160–27175. https://doi.org/10.18632/oncotarget.4746 [DOI: 10.18632/oncotarget.4746]
  48. Geissmann F, Manz MG, Jung S, Sieweke MH, Merad M, Ley K (2010) Development of monocytes, macrophages, and dendritic cells. Science (New York, NY) 327(5966):656–661. https://doi.org/10.1126/science.1178331 [DOI: 10.1126/science.1178331]
  49. Ghiringhelli F, Puig PE, Roux S, Parcellier A, Schmitt E, Solary E, Kroemer G, Martin F, Chauffert B, Zitvogel L (2005) Tumor cells convert immature myeloid dendritic cells into TGF-beta-secreting cells inducing CD4+CD25+ regulatory T cell proliferation. J Exp Med 202(7):919–929. https://doi.org/10.1084/jem.20050463 [DOI: 10.1084/jem.20050463]
  50. Grivennikov SI, Greten FR, Karin M (2010) Immunity, inflammation, and cancer. Cell 140(6):883–899. https://doi.org/10.1016/j.cell.2010.01.025 [DOI: 10.1016/j.cell.2010.01.025]
  51. Grohova A, Danova K, Adkins I, Sumnik Z, Petruzelkova L, Obermannova B, Kolouskova S, Spisek R, Palova-Jelinkova L (2020) Myeloid - derived suppressor cells in Type 1 diabetes are an expanded population exhibiting diverse T-cell suppressor mechanisms. PLoS ONE 15(11):e0242092. https://doi.org/10.1371/journal.pone.0242092 [DOI: 10.1371/journal.pone.0242092]
  52. Groth C, Hu X, Weber R, Fleming V, Altevogt P, Utikal J, Umansky V (2019) Immunosuppression mediated by myeloid-derived suppressor cells (MDSCs) during tumour progression. Br J Cancer 120(1):16–25. https://doi.org/10.1038/s41416-018-0333-1 [DOI: 10.1038/s41416-018-0333-1]
  53. Gu H, Deng W, Zheng Z, Wu K, Sun F (2021) CCL2 produced by pancreatic ductal adenocarcinoma is essential for the accumulation and activation of monocytic myeloid-derived suppressor cells. Immun Inflamm Dis 9(4):1686–1695. https://doi.org/10.1002/iid3.523 [DOI: 10.1002/iid3.523]
  54. Guan Q, Moreno S, Qing G, Weiss CR, Lu L, Bernstein CN, Warrington RJ, Ma Y, Peng Z (2013) The role and potential therapeutic application of myeloid-derived suppressor cells in TNBS-induced colitis. J Leukoc Biol 94(4):803–811. https://doi.org/10.1189/jlb.0113050 [DOI: 10.1189/jlb.0113050]
  55. Haile LA, von Wasielewski R, Gamrekelashvili J, Kruger C, Bachmann O, Westendorf AM, Buer J, Liblau R, Manns MP, Korangy F, Greten TF (2008) Myeloid-derived suppressor cells in inflammatory bowel disease: a new immunoregulatory pathway. Gastroenterology 135(3):871–881. https://doi.org/10.1053/j.gastro.2008.06.032 [DOI: 10.1053/j.gastro.2008.06.032]
  56. He N, Jiang J (2022) Contribution of immune cells to bone metastasis pathogenesis. Front Endocrinol (Lausanne) 13:1019864. https://doi.org/10.3389/fendo.2022.1019864 [DOI: 10.3389/fendo.2022.1019864]
  57. He ZN, Zhang CY, Zhao YW, He SL, Li Y, Shi BL, Hu JQ, Qi RZ, Hua BJ (2023) Regulation of T cells by myeloid-derived suppressor cells: emerging immunosuppressor in lung cancer. Discov Oncol 14(1):185. https://doi.org/10.1007/s12672-023-00793-1 [DOI: 10.1007/s12672-023-00793-1]
  58. Hegde VL, Nagarkatti PS, Nagarkatti M (2011) Role of myeloid-derived suppressor cells in amelioration of experimental autoimmune hepatitis following activation of TRPV1 receptors by cannabidiol. PLoS ONE 6(4):e18281. https://doi.org/10.1371/journal.pone.0018281 [DOI: 10.1371/journal.pone.0018281]
  59. Heim CE, Vidlak D, Scherr TD, Kozel JA, Holzapfel M, Muirhead DE, Kielian T (2014) Myeloid-derived suppressor cells contribute to Staphylococcus aureus orthopedic biofilm infection. J Immunol 192(8):3778–3792. https://doi.org/10.4049/jimmunol.1303408 [DOI: 10.4049/jimmunol.1303408]
  60. Hibi S, Lohler J, Friel J, Stocking C, Ostertag W (1993) Induction of monocytic differentiation and tumorigenicity by v-Ha-ras in differentiation arrested hematopoietic cells. Blood 81(7):1841–1848. https://doi.org/10.1182/blood.V81.7.1841.1841 [DOI: 10.1182/blood.V81.7.1841.1841]
  61. Hock BD, Mackenzie KA, Cross NB, Taylor KG, Currie MJ, Robinson BA, Simcock JW, McKenzie JL (2012) Renal transplant recipients have elevated frequencies of circulating myeloid-derived suppressor cells. Nephrol Dial Transpl 27(1):402–410. https://doi.org/10.1093/ndt/gfr264 [DOI: 10.1093/ndt/gfr264]
  62. Horikawa N, Abiko K, Matsumura N, Hamanishi J, Baba T, Yamaguchi K, Yoshioka Y, Koshiyama M, Konishi I (2017) Expression of vascular endothelial growth factor in ovarian cancer inhibits tumor immunity through the accumulation of myeloid-derived suppressor cells. Clin Cancer Res 23(2):587–599. https://doi.org/10.1158/1078-0432.CCR-16-0387 [DOI: 10.1158/1078-0432.CCR-16-0387]
  63. Ioannou M, Alissafi T, Lazaridis I, Deraos G, Matsoukas J, Gravanis A, Mastorodemos V, Plaitakis A, Sharpe A, Boumpas D, Verginis P (2012) Crucial role of granulocytic myeloid-derived suppressor cells in the regulation of central nervous system autoimmune disease. J Immunol 188(3):1136–1146. https://doi.org/10.4049/jimmunol.1101816 [DOI: 10.4049/jimmunol.1101816]
  64. Iske J, Cao Y, Roesel MJ, Shen Z, Nian Y (2023) Metabolic reprogramming of myeloid-derived suppressor cells in the context of organ transplantation. Cytotherapy 25(8):789–797. https://doi.org/10.1016/j.jcyt.2023.04.010 [DOI: 10.1016/j.jcyt.2023.04.010]
  65. Iwatsuki M, Mimori K, Yokobori T, Ishi H, Beppu T, Nakamori S, Baba H, Mori M (2010) Epithelial-mesenchymal transition in cancer development and its clinical significance. Cancer Sci 101(2):293–299. https://doi.org/10.1111/j.1349-7006.2009.01419.x [DOI: 10.1111/j.1349-7006.2009.01419.x]
  66. Janols H, Bergenfelz C, Allaoui R, Larsson AM, Ryden L, Bjornsson S, Janciauskiene S, Wullt M, Bredberg A, Leandersson K (2014) A high frequency of MDSCs in sepsis patients, with the granulocytic subtype dominating in gram-positive cases. J Leukoc Biol 96(5):685–693. https://doi.org/10.1189/jlb.5HI0214-074R [DOI: 10.1189/jlb.5HI0214-074R]
  67. Jeong HJ, Lee HJ, Ko JH, Cho BJ, Park SY, Park JW, Choi SR, Heo JW, Yoon SO, Oh JY (2018) Myeloid-derived suppressor cells mediate inflammation resolution in humans and mice with autoimmune uveoretinitis. J Immunol 200(4):1306–1315. https://doi.org/10.4049/jimmunol.1700617 [DOI: 10.4049/jimmunol.1700617]
  68. Ji J, Li P, Shen C, Dou H, Wang T, Shi L, Hou Y (2019) MDSCs: friend or foe in systemic lupus erythematosus. Cell Mol Immunol 16(12):937–939. https://doi.org/10.1038/s41423-019-0271-8 [DOI: 10.1038/s41423-019-0271-8]
  69. Jiang M, Chen J, Zhang W, Zhang R, Ye Y, Liu P, Yu W, Wei F, Ren X, Yu J (2017) Interleukin-6 trans-signaling pathway promotes immunosuppressive myeloid-derived suppressor cells via suppression of suppressor of cytokine signaling 3 in breast cancer. Front Immunol 8:1840. https://doi.org/10.3389/fimmu.2017.01840 [DOI: 10.3389/fimmu.2017.01840]
  70. Jou E, Chaudhury N, Nasim F (2024) Novel therapeutic strategies targeting myeloid-derived suppressor cell immunosuppressive mechanisms for cancer treatment. Explor Target Antitumor Ther 5(1):187–207. https://doi.org/10.37349/etat.2024.00212 [DOI: 10.37349/etat.2024.00212]
  71. Kang C, Jeong SY, Song SY, Choi EK (2020) The emerging role of myeloid-derived suppressor cells in radiotherapy. Radiat Oncol J 38(1):1–10. https://doi.org/10.3857/roj.2019.00640 [DOI: 10.3857/roj.2019.00640]
  72. Kerr EC, Raveney BJ, Copland DA, Dick AD, Nicholson LB (2008) Analysis of retinal cellular infiltrate in experimental autoimmune uveoretinitis reveals multiple regulatory cell populations. J Autoimmun 31(4):354–361. https://doi.org/10.1016/j.jaut.2008.08.006 [DOI: 10.1016/j.jaut.2008.08.006]
  73. Knaul JK, Jorg S, Oberbeck-Mueller D, Heinemann E, Scheuermann L, Brinkmann V, Mollenkopf HJ, Yeremeev V, Kaufmann SH, Dorhoi A (2014) Lung-residing myeloid-derived suppressors display dual functionality in murine pulmonary tuberculosis. Am J Respir Crit Care Med 190(9):1053–1066. https://doi.org/10.1164/rccm.201405-0828OC [DOI: 10.1164/rccm.201405-0828OC]
  74. Knier B, Hiltensperger M (2018) Myeloid-derived suppressor cells control B cell accumulation in the central nervous system during autoimmunity. Nat Immunol 19(12):1341–1351. https://doi.org/10.1038/s41590-018-0237-5 [DOI: 10.1038/s41590-018-0237-5]
  75. Ko HJ, Kim YJ (2016) Signal transducer and activator of transcription proteins: regulators of myeloid-derived suppressor cell-mediated immunosuppression in cancer. Arch Pharm Res 39(11):1597–1608. https://doi.org/10.1007/s12272-016-0822-9 [DOI: 10.1007/s12272-016-0822-9]
  76. Koinis F, Vetsika EK, Aggouraki D, Skalidaki E, Koutoulaki A, Gkioulmpasani M, Georgoulias V, Kotsakis A (2016) Effect of first-line treatment on myeloid-derived suppressor cells’ subpopulations in the peripheral blood of patients with non-small cell lung cancer. J Thorac Oncol 11(8):1263–1272. https://doi.org/10.1016/j.jtho.2016.04.026 [DOI: 10.1016/j.jtho.2016.04.026]
  77. Kolahian S, Nowroozi Larki N, Halit Öz H, Schroth C, Shahbazfar AA, Glück M, Nürnberg B, Hartl D (2017) Anti-inflammatory role of myeloid-derived suppressor cells in asthma in vivo. Eur Respir J 50(suppl61):P4921. https://doi.org/10.1183/1393003.congress-2017.PA4921 [DOI: 10.1183/1393003.congress-2017.PA4921]
  78. Kontaki E, Boumpas DT, Tzardi M, Mouzas IA, Papadakis KA, Verginis P (2017) Aberrant function of myeloid-derived suppressor cells (MDSCs) in experimental colitis and in inflammatory bowel disease (IBD) immune responses. Autoimmunity 50(3):170–181. https://doi.org/10.1080/08916934.2017.1283405 [DOI: 10.1080/08916934.2017.1283405]
  79. Krstic J, Santibanez JF (2014) Transforming growth factor-beta and matrix metalloproteinases: functional interactions in tumor stroma-infiltrating myeloid cells. TheScientificWorldJOURNAL 2014:521754–521754. https://doi.org/10.1155/2014/521754 [DOI: 10.1155/2014/521754]
  80. Kujawski M, Kortylewski M, Lee H, Herrmann A, Kay H, Yu H (2008) Stat3 mediates myeloid cell-dependent tumor angiogenesis in mice. J Clin Invest 118(10):3367–3377. https://doi.org/10.1172/jci35213 [DOI: 10.1172/jci35213]
  81. Kumar V, Patel S, Tcyganov E, Gabrilovich DI (2016) The nature of myeloid-derived suppressor cells in the tumor microenvironment. Trends Immunol 37(3):208–220. https://doi.org/10.1016/j.it.2016.01.004 [DOI: 10.1016/j.it.2016.01.004]
  82. Kusmartsev S, Gabrilovich DI (2005) STAT1 signaling regulates tumor-associated macrophage-mediated T cell deletion. J Immunol 174(8):4880–4891. https://doi.org/10.4049/jimmunol.174.8.4880 [DOI: 10.4049/jimmunol.174.8.4880]
  83. Labrousse AL, Ntayi C, Hornebeck W, Bernard P (2004) Stromal reaction in cutaneous melanoma. Crit Rev Oncol Hematol 49(3):269–275. https://doi.org/10.1016/j.critrevonc.2003.10.007 [DOI: 10.1016/j.critrevonc.2003.10.007]
  84. Landskron G, De la Fuente M, Thuwajit P, Thuwajit C, Hermoso MA (2014) Chronic inflammation and cytokines in the tumor microenvironment. J Immunol Res 2014:149185–149185. https://doi.org/10.1155/2014/149185 [DOI: 10.1155/2014/149185]
  85. Law AMK, Valdes-Mora F, Gallego-Ortega D (2020) Myeloid-derived suppressor cells as a therapeutic target for cancer. Cells. https://doi.org/10.3390/cells9030561 [DOI: 10.3390/cells9030561]
  86. Lechner MG, Liebertz DJ, Epstein AL (2010) Characterization of cytokine-induced myeloid-derived suppressor cells from normal human peripheral blood mononuclear cells. J Immunol 185(4):2273–2284. https://doi.org/10.4049/jimmunol.1000901 [DOI: 10.4049/jimmunol.1000901]
  87. Lee CR, Lee W, Cho SK, Park SG (2018a) Characterization of multiple cytokine combinations and TGF-beta on differentiation and functions of myeloid-derived suppressor cells. Int J Mol Sci 19(3):869. https://doi.org/10.3390/ijms19030869 [DOI: 10.3390/ijms19030869]
  88. Lee SE, Lim JY, Kim TW, Jeon YW, Yoon JH, Cho BS, Eom KS, Kim YJ, Kim HJ, Lee S, Cho SG, Kim DW, Lee JW, Min WS, Shin DM, Choi EY, Min CK (2018b) Matrix metalloproteinase-9 in monocytic myeloid-derived suppressor cells correlate with early infections and clinical outcomes in allogeneic hematopoietic stem cell transplantation. Biol Blood Marrow Transpl 24(1):32–42. https://doi.org/10.1016/j.bbmt.2017.08.017 [DOI: 10.1016/j.bbmt.2017.08.017]
  89. Lee S, Blanco T, Musayeva A, Dehghani S, Narimatsu A, Forouzanfar K, Ortiz G, Kahale F, Wang S, Chen Y, Dohlman TH, Chauhan SK, Dana R (2024) Myeloid-derived suppressor cells promote allograft survival by suppressing regulatory T cell dysfunction in high-risk corneal transplantation. Am J Transpl. https://doi.org/10.1016/j.ajt.2024.03.022 [DOI: 10.1016/j.ajt.2024.03.022]
  90. Leukes V, Walzl G, du Plessis N (2020) Myeloid-derived suppressor cells as target of phosphodiesterase-5 inhibitors in host-directed therapeutics for tuberculosis. Front Immunol 11:451. https://doi.org/10.3389/fimmu.2020.00451 [DOI: 10.3389/fimmu.2020.00451]
  91. Li BH, Garstka MA, Li ZF (2020) Chemokines and their receptors promoting the recruitment of myeloid-derived suppressor cells into the tumor. Mol Immunol 117:201–215. https://doi.org/10.1016/j.molimm.2019.11.014 [DOI: 10.1016/j.molimm.2019.11.014]
  92. Li K, Shi H, Zhang B, Ou X, Ma Q, Chen Y, Shu P, Li D, Wang Y (2021a) Myeloid-derived suppressor cells as immunosuppressive regulators and therapeutic targets in cancer. Signal Transduct Target Ther 6(1):362. https://doi.org/10.1038/s41392-021-00670-9 [DOI: 10.1038/s41392-021-00670-9]
  93. Li Y, Xu Y, Liu X, Yan X, Lin Y, Tan Q, Hou Y (2021b) mTOR inhibitor INK128 promotes wound healing by regulating MDSCs. Stem Cell Res Ther 12(1):170. https://doi.org/10.1186/s13287-021-02206-y [DOI: 10.1186/s13287-021-02206-y]
  94. Li Z, Xia Q, He Y, Li L, Yin P (2024) MDSCs in bone metastasis: mechanisms and therapeutic potential. Cancer Lett 592:216906. https://doi.org/10.1016/j.canlet.2024.216906 [DOI: 10.1016/j.canlet.2024.216906]
  95. Liang L, Xu X, Li J, Yang C (2022) Interaction between microRNAs and myeloid-derived suppressor cells in tumor microenvironment. Front Immunol 13:883683. https://doi.org/10.3389/fimmu.2022.883683 [DOI: 10.3389/fimmu.2022.883683]
  96. Lindau D, Gielen P, Kroesen M, Wesseling P, Adema GJ (2013) The immunosuppressive tumour network: myeloid-derived suppressor cells, regulatory T cells and natural killer T cells. Immunology 138(2):105–115. https://doi.org/10.1111/imm.12036 [DOI: 10.1111/imm.12036]
  97. Liu Y-F, Zhuang K-H, Chen B, Li P-W, Zhou X, Jiang H, Zhong L-M, Liu F-B (2018) Expansion and activation of monocytic-myeloid-derived suppressor cell via STAT3/arginase-I signaling in patients with ankylosing spondylitis. Arthritis Res Ther 20(1):168–168. https://doi.org/10.1186/s13075-018-1654-4 [DOI: 10.1186/s13075-018-1654-4]
  98. Liversidge J, Dick A, Gordon S (2002) Nitric oxide mediates apoptosis through formation of peroxynitrite and Fas/Fas-ligand interactions in experimental autoimmune uveitis. Am J Pathol 160(3):905–916. https://doi.org/10.1016/s0002-9440(10)64913-9 [DOI: 10.1016/s0002-9440(10)64913-9]
  99. London A, Benhar I, Mattapallil MJ, Mack M, Caspi RR, Schwartz M (2013) Functional macrophage heterogeneity in a mouse model of autoimmune central nervous system pathology. J Immunol 190(7):3570–3578. https://doi.org/10.4049/jimmunol.1202076 [DOI: 10.4049/jimmunol.1202076]
  100. Lu J, Luo Y, Rao D, Wang T, Lei Z, Chen X, Zhang B, Li Y, Liu B, Xia L, Huang W (2024) Myeloid-derived suppressor cells in cancer: therapeutic targets to overcome tumor immune evasion. Exp Hematol Oncol 13(1):39. https://doi.org/10.1186/s40164-024-00505-7 [DOI: 10.1186/s40164-024-00505-7]
  101. Ma X, Yan W, Zheng H, Du Q, Zhang L, Ban Y, Li N, Wei F (2015) Regulation of IL-10 and IL-12 production and function in macrophages and dendritic cells. F1000Res 4:1465. https://doi.org/10.12688/f1000research.7010.1 [DOI: 10.12688/f1000research.7010.1]
  102. Ma X, Wang M, Yin T, Zhao Y, Wei X (2019) Myeloid-derived suppressor cells promote metastasis in breast cancer after the stress of operative removal of the primary cancer. Front Oncol 9:855–855. https://doi.org/10.3389/fonc.2019.00855 [DOI: 10.3389/fonc.2019.00855]
  103. Ma Z, Zhen Y, Hu C, Yi H (2020) Myeloid-derived suppressor cell-derived arginase-1 oppositely modulates IL-17A and IL-17F through the ESR/STAT3 pathway during colitis in mice. Front Immunol 11:687. https://doi.org/10.3389/fimmu.2020.00687 [DOI: 10.3389/fimmu.2020.00687]
  104. Mace TA, Bloomston M, Lesinski GB (2013) Pancreatic cancer-associated stellate cells: a viable target for reducing immunosuppression in the tumor microenvironment. Oncoimmunology 2(7):e24891. https://doi.org/10.4161/onci.24891 [DOI: 10.4161/onci.24891]
  105. Magcwebeba T, Dorhoi A, du Plessis N (2019) The emerging role of myeloid-derived suppressor cells in tuberculosis. Front Immunol. https://doi.org/10.3389/fimmu.2019.00917 [DOI: 10.3389/fimmu.2019.00917]
  106. Magcwebeba T, Dorhoi A, du Plessis N (2019b) The emerging role of myeloid-derived suppressor cells in tuberculosis. Front Immunol 10:917. https://doi.org/10.3389/fimmu.2019.00917 [DOI: 10.3389/fimmu.2019.00917]
  107. Marhaba R, Vitacolonna M, Hildebrand D, Baniyash M, Freyschmidt-Paul P, Zöller M (2007) The importance of myeloid-derived suppressor cells in the regulation of autoimmune effector cells by a chronic contact eczema. J Immunol 179(8):5071–5081. https://doi.org/10.4049/jimmunol.179.8.5071 [DOI: 10.4049/jimmunol.179.8.5071]
  108. Melero-Jerez C, Suardiaz M, Lebron-Galan R, Marin-Banasco C, Oliver-Martos B, Machin-Diaz I, Fernandez O, de Castro F, Clemente D (2019) The presence and suppressive activity of myeloid-derived suppressor cells are potentiated after interferon-beta treatment in a murine model of multiple sclerosis. Neurobiol Dis 127:13–31. https://doi.org/10.1016/j.nbd.2019.02.014 [DOI: 10.1016/j.nbd.2019.02.014]
  109. Melero-Jerez C, Alonso-Gomez A, Monivas E, Lebron-Galan R, Machin-Diaz I, de Castro F, Clemente D (2020) The proportion of myeloid-derived suppressor cells in the spleen is related to the severity of the clinical course and tissue damage extent in a murine model of multiple sclerosis. Neurobiol Dis 140:104869. https://doi.org/10.1016/j.nbd.2020.104869 [DOI: 10.1016/j.nbd.2020.104869]
  110. Moline-Velazquez V, Cuervo H, Vila-Del Sol V, Ortega MC, Clemente D, de Castro F (2011) Myeloid-derived suppressor cells limit the inflammation by promoting T lymphocyte apoptosis in the spinal cord of a murine model of multiple sclerosis. Brain Pathol 21(6):678–691. https://doi.org/10.1111/j.1750-3639.2011.00495.x [DOI: 10.1111/j.1750-3639.2011.00495.x]
  111. Monu NR, Frey AB (2012) Myeloid-derived suppressor cells and anti-tumor T cells: a complex relationship. Immunol Invest 41(6–7):595–613. https://doi.org/10.3109/08820139.2012.673191 [DOI: 10.3109/08820139.2012.673191]
  112. Morales JK, Kmieciak M, Knutson KL, Bear HD, Manjili MH (2010) GM-CSF is one of the main breast tumor-derived soluble factors involved in the differentiation of CD11b-Gr1- bone marrow progenitor cells into myeloid-derived suppressor cells. Breast Cancer Res Treat 123(1):39–49. https://doi.org/10.1007/s10549-009-0622-8 [DOI: 10.1007/s10549-009-0622-8]
  113. Movahedi K, Guilliams M, Van den Bossche J, Van den Bergh R, Gysemans C, Beschin A, De Baetselier P, Van Ginderachter JA (2008) Identification of discrete tumor-induced myeloid-derived suppressor cell subpopulations with distinct T cell-suppressive activity. Blood 111(8):4233–4244. https://doi.org/10.1182/blood-2007-07-099226 [DOI: 10.1182/blood-2007-07-099226]
  114. Mucha J, Majchrzak K, Taciak B, Hellmén E, Król M (2014) MDSCs mediate angiogenesis and predispose canine mammary tumor cells for metastasis via IL-28/IL-28RA (IFN-λ) signaling. PLoS ONE 9(7):e103249–e103249. https://doi.org/10.1371/journal.pone.0103249 [DOI: 10.1371/journal.pone.0103249]
  115. Nagaraj S, Schrum AG, Cho H-I, Celis E, Gabrilovich DI (2010) Mechanism of T cell tolerance induced by myeloid-derived suppressor cells. J Immunol (Baltimore, Md: 1950) 184(6):3106–3116. https://doi.org/10.4049/jimmunol.0902661 [DOI: 10.4049/jimmunol.0902661]
  116. Nagaraj S, Youn J-I, Weber H, Iclozan C, Lu L, Cotter MJ, Meyer C, Becerra CR, Fishman M, Antonia S, Sporn MB, Liby KT, Rawal B, Lee J-H, Gabrilovich DI (2010b) Anti-inflammatory triterpenoid blocks immune suppressive function of MDSCs and improves immune response in cancer. Clin Cancer Res 16(6):1812–1823. https://doi.org/10.1158/1078-0432.CCR-09-3272 [DOI: 10.1158/1078-0432.CCR-09-3272]
  117. Nakamura K, Smyth MJ (2020) Myeloid immunosuppression and immune checkpoints in the tumor microenvironment. Cell Mol Immunol 17(1):1–12. https://doi.org/10.1038/s41423-019-0306-1 [DOI: 10.1038/s41423-019-0306-1]
  118. Narkeviciute I, Mieliauskaite D, Mackiewicz Z, Butrimiene I, Viliene R, Dumalakiene I (2018) Distribution of myeloid-derived suppressor cells in rheumatoid arthritis and Sjögren’s syndrome. Arch Rheumatol 34(1):53–61. https://doi.org/10.5606/ArchRheumatol.2019.6813 [DOI: 10.5606/ArchRheumatol.2019.6813]
  119. Öz HH, Zhou B, Voss P, Carevic M, Schroth C, Frey N, Rieber N, Hector A, Hartl D (2016) Pseudomonas aeruginosa airway infection recruits and modulates neutrophilic myeloid-derived suppressor cells. Front Cell Infect Microbiol 6:167–167. https://doi.org/10.3389/fcimb.2016.00167 [DOI: 10.3389/fcimb.2016.00167]
  120. Özkan B, Lim H, Park S-G (2018) Immunomodulatory function of myeloid-derived suppressor cells during B cell-mediated immune responses. Int J Mol Sci 19(5):1468. https://doi.org/10.3390/ijms19051468 [DOI: 10.3390/ijms19051468]
  121. Park MY, Lim BG, Kim SY, Sohn HJ, Kim S, Kim TG (2019) GM-CSF promotes the expansion and differentiation of cord blood myeloid-derived suppressor cells, which attenuate xenogeneic graft-vs-host disease. Front Immunol 10:183. https://doi.org/10.3389/fimmu.2019.00183 [DOI: 10.3389/fimmu.2019.00183]
  122. Parker KH, Beury DW, Ostrand-Rosenberg S (2015) Myeloid-derived suppressor cells: critical cells driving immune suppression in the tumor microenvironment. Adv Cancer Res 128:95–139. https://doi.org/10.1016/bs.acr.2015.04.002 [DOI: 10.1016/bs.acr.2015.04.002]
  123. Pawelec G, Verschoor CP, Ostrand-Rosenberg S (2019) Myeloid-derived suppressor cells: not only in tumor immunity. Front Immunol 10:1099–1099. https://doi.org/10.3389/fimmu.2019.01099 [DOI: 10.3389/fimmu.2019.01099]
  124. Peng KT, Hsieh CC, Huang TY, Chen PC, Shih HN, Lee MS, Chang PJ (2017) Staphylococcus aureus biofilm elicits the expansion, activation and polarization of myeloid-derived suppressor cells in vivo and in vitro. PLoS ONE 12(8):e0183271. https://doi.org/10.1371/journal.pone.0183271 [DOI: 10.1371/journal.pone.0183271]
  125. Poschke I, Mougiakakos D, Hansson J, Masucci GV, Kiessling R (2010) Immature immunosuppressive CD14+HLA-DR-/low cells in melanoma patients are Stat3hi and overexpress CD80, CD83, and DC-sign. Cancer Res 70(11):4335–4345. https://doi.org/10.1158/0008-5472.can-09-3767 [DOI: 10.1158/0008-5472.can-09-3767]
  126. Pyzer AR, Cole L, Rosenblatt J, Avigan DE (2016) Myeloid-derived suppressor cells as effectors of immune suppression in cancer. Int J Cancer 139(9):1915–1926. https://doi.org/10.1002/ijc.30232 [DOI: 10.1002/ijc.30232]
  127. Rashid MH, Borin TF, Ara R, Piranlioglu R, Achyut BR, Korkaya H, Liu Y, Arbab AS (2021) Critical immunosuppressive effect of MDSC-derived exosomes in the tumor microenvironment. Oncol Rep 45(3):1171–1181. https://doi.org/10.3892/or.2021.7936 [DOI: 10.3892/or.2021.7936]
  128. Raveney BJ, Copland DA, Dick AD, Nicholson LB (2009) TNFR1-dependent regulation of myeloid cell function in experimental autoimmune uveoretinitis. J Immunol 183(4):2321–2329. https://doi.org/10.4049/jimmunol.0901340 [DOI: 10.4049/jimmunol.0901340]
  129. Ribechini E, Greifenberg V, Sandwick S, Lutz MB (2010) Subsets, expansion and activation of myeloid-derived suppressor cells. Med Microbiol Immunol 199(3):273–281. https://doi.org/10.1007/s00430-010-0151-4 [DOI: 10.1007/s00430-010-0151-4]
  130. Ribechini E, Eckert I, Beilhack A, Du Plessis N, Walzl G, Schleicher U, Ritter U, Lutz MB (2019) Heat-killed Mycobacterium tuberculosis prime-boost vaccination induces myeloid-derived suppressor cells with spleen dendritic cell-killing capability. JCI Insight. https://doi.org/10.1172/jci.insight.128664 [DOI: 10.1172/jci.insight.128664]
  131. Rieber N, Brand A, Hector A, Graepler-Mainka U, Ost M, Schafer I, Wecker I, Neri D, Wirth A, Mays L, Zundel S, Fuchs J, Handgretinger R, Stern M, Hogardt M, Doring G, Riethmuller J, Kormann M, Hartl D (2013) Flagellin induces myeloid-derived suppressor cells: implications for Pseudomonas aeruginosa infection in cystic fibrosis lung disease. J Immunol 190(3):1276–1284. https://doi.org/10.4049/jimmunol.1202144 [DOI: 10.4049/jimmunol.1202144]
  132. Rui K, Peng N, Xiao F, Lu L, Tian J (2023) New insights into the functions of MDSCs in autoimmune pathogenesis. Cell Mol Immunol 20(5):548–550. https://doi.org/10.1038/s41423-023-01004-1 [DOI: 10.1038/s41423-023-01004-1]
  133. Sadeghi M, Dehnavi S, Sharifat M, Amiri AM, Khodadadi A (2024) Innate immune cells: key players of orchestra in modulating tumor microenvironment (TME). Heliyon 10(5):e27480. https://doi.org/10.1016/j.heliyon.2024.e27480 [DOI: 10.1016/j.heliyon.2024.e27480]
  134. Schrijver IT, Théroude C, Roger T (2019) Myeloid-derived suppressor cells in sepsis. Front Immunol 10:327–327. https://doi.org/10.3389/fimmu.2019.00327 [DOI: 10.3389/fimmu.2019.00327]
  135. Sevko A, Michels T, Vrohlings M, Umansky L, Beckhove P, Kato M, Shurin GV, Shurin MR, Umansky V (2013) Antitumor effect of paclitaxel is mediated by inhibition of myeloid-derived suppressor cells and chronic inflammation in the spontaneous melanoma model. J Immunol (Baltimore, Md: 1950) 190(5):2464–2471. https://doi.org/10.4049/jimmunol.1202781 [DOI: 10.4049/jimmunol.1202781]
  136. Shen M, Fan X, Shen Y, Wang X, Wu R, Wang Y, Huang C, Zhao S, Zheng Y, Men R, Luo X, Yang L (2023) Myeloid-derived suppressor cells ameliorate liver mitochondrial damage to protect against autoimmune hepatitis by releasing small extracellular vesicles. Int Immunopharmacol 114:109540. https://doi.org/10.1016/j.intimp.2022.109540 [DOI: 10.1016/j.intimp.2022.109540]
  137. Shi M, Shi G, Tang J, Kong D, Bao Y, Xiao B, Zuo C, Wang T, Wang Q, Shen Y, Wang H, Funk CD, Zhou J, Yu Y (2014) Myeloid-derived suppressor cell function is diminished in aspirin-triggered allergic airway hyperresponsiveness in mice. J Allergy Clin Immunol 134(5):1163-1174.e1116. https://doi.org/10.1016/j.jaci.2014.04.035 [DOI: 10.1016/j.jaci.2014.04.035]
  138. Shibata M, Nanno K, Yoshimori D, Nakajima T, Takada M, Yazawa T, Mimura K, Inoue N, Watanabe T, Tachibana K, Muto S, Momma T, Suzuki Y, Kono K, Endo S, Takenoshita S (2022) Myeloid-derived suppressor cells: cancer, autoimmune diseases, and more. Oncotarget 13:1273–1285. https://doi.org/10.18632/oncotarget.28303 [DOI: 10.18632/oncotarget.28303]
  139. Singh V, Mueller U, Freyschmidt-Paul P, Zoller M (2011) Delayed type hypersensitivity-induced myeloid-derived suppressor cells regulate autoreactive T cells. Eur J Immunol 41(10):2871–2882. https://doi.org/10.1002/eji.201141696 [DOI: 10.1002/eji.201141696]
  140. Singh S, Mehta N, Lilan J, Budhthoki MB, Chao F, Yong L (2017) Initiative action of tumor-associated macrophage during tumor metastasis. Biochimie Open 4:8–18. https://doi.org/10.1016/j.biopen.2016.11.002 [DOI: 10.1016/j.biopen.2016.11.002]
  141. Singh B, Singh DK, Ganatra SR, Escobedo RA, Khader S, Schlesinger LS, Kaushal D, Mehra S (2021) Myeloid-derived suppressor cells mediate T cell dysfunction in nonhuman primate TB granulomas. mBio 12(6):e03189-03121. https://doi.org/10.1128/mbio.03189-21 [DOI: 10.1128/mbio.03189-21]
  142. Sinha P, Okoro C, Foell D, Freeze HH, Ostrand-Rosenberg S, Srikrishna G (2008) Proinflammatory S100 proteins regulate the accumulation of myeloid-derived suppressor cells. J Immunol 181(7):4666–4675. https://doi.org/10.4049/jimmunol.181.7.4666 [DOI: 10.4049/jimmunol.181.7.4666]
  143. Song X, Krelin Y, Dvorkin T, Bjorkdahl O, Segal S, Dinarello CA, Voronov E, Apte RN (2005) CD11b+/Gr-1+ immature myeloid cells mediate suppression of T cells in mice bearing tumors of IL-1beta-secreting cells. J Immunol 175(12):8200–8208. https://doi.org/10.4049/jimmunol.175.12.8200 [DOI: 10.4049/jimmunol.175.12.8200]
  144. Steding CE, Wu ST, Zhang Y, Jeng MH, Elzey BD, Kao C (2011) The role of interleukin-12 on modulating myeloid-derived suppressor cells, increasing overall survival and reducing metastasis. Immunology 133(2):221–238. https://doi.org/10.1111/j.1365-2567.2011.03429.x [DOI: 10.1111/j.1365-2567.2011.03429.x]
  145. Stoll H, Ost M, Singh A, Mehling R, Neri D, Schäfer I, Velic A, Macek B, Kretschmer D, Weidenmaier C, Hector A, Handgretinger R, Götz F, Peschel A, Hartl D, Rieber N (2018) Staphylococcal enterotoxins dose-dependently modulate the generation of myeloid-derived suppressor cells. Front Cell Infect Microbiol. https://doi.org/10.3389/fcimb.2018.00321 [DOI: 10.3389/fcimb.2018.00321]
  146. Sucher R, Kurz K, Weiss G, Margreiter R, Fuchs D, Brandacher G (2010) IDO-mediated tryptophan degradation in the pathogenesis of malignant tumor disease. Int J Tryptophan Res 3:113–120. https://doi.org/10.4137/ijtr.s4157 [DOI: 10.4137/ijtr.s4157]
  147. Sui H, Dongye S, Liu X, Xu X, Wang L, Jin CQ, Yao M, Gong Z, Jiang D, Zhang K, Liu Y, Liu H, Jiang G, Su Y (2022) Immunotherapy of targeting MDSCs in tumor microenvironment. Front Immunol 13:990463. https://doi.org/10.3389/fimmu.2022.990463 [DOI: 10.3389/fimmu.2022.990463]
  148. Talmadge JE, Gabrilovich DI (2013) History of myeloid-derived suppressor cells. Nat Rev Cancer 13(10):739–752. https://doi.org/10.1038/nrc3581 [DOI: 10.1038/nrc3581]
  149. Taylor A, Verhagen J, Blaser K, Akdis M, Akdis CA (2006) Mechanisms of immune suppression by interleukin-10 and transforming growth factor-beta: the role of T regulatory cells. Immunology 117(4):433–442. https://doi.org/10.1111/j.1365-2567.2006.02321.x [DOI: 10.1111/j.1365-2567.2006.02321.x]
  150. Tcyganov E, Mastio J, Chen E, Gabrilovich DI (2018) Plasticity of myeloid-derived suppressor cells in cancer. Curr Opin Immunol 51:76–82. https://doi.org/10.1016/j.coi.2018.03.009 [DOI: 10.1016/j.coi.2018.03.009]
  151. Tebartz C, Horst SA, Sparwasser T, Huehn J, Beineke A, Peters G, Medina E (2015) A major role for myeloid-derived suppressor cells and a minor role for regulatory T cells in immunosuppression during Staphylococcus aureus infection. J Immunol 194(3):1100–1111. https://doi.org/10.4049/jimmunol.1400196 [DOI: 10.4049/jimmunol.1400196]
  152. Terabe M, Matsui S, Park JM, Mamura M, Noben-Trauth N, Donaldson DD, Chen W, Wahl SM, Ledbetter S, Pratt B, Letterio JJ, Paul WE, Berzofsky JA (2003) Transforming growth factor-beta production and myeloid cells are an effector mechanism through which CD1d-restricted T cells block cytotoxic T lymphocyte-mediated tumor immunosurveillance: abrogation prevents tumor recurrence. J Exp Med 198(11):1741–1752. https://doi.org/10.1084/jem.20022227 [DOI: 10.1084/jem.20022227]
  153. Thiery JP (2002) Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer 2(6):442–454. https://doi.org/10.1038/nrc822 [DOI: 10.1038/nrc822]
  154. Tobin RP, Jordan KR, Kapoor P, Spongberg E, Davis D, Vorwald VM, Couts KL, Gao D, Smith DE, Borgers JSW, Robinson S, Amato C, Gonzalez R, Lewis KD, Robinson WA, Borges VF, McCarter MD (2019) IL-6 and IL-8 are linked with myeloid-derived suppressor cell accumulation and correlate with poor clinical outcomes in melanoma patients. Front Oncol 9:1223. https://doi.org/10.3389/fonc.2019.01223 [DOI: 10.3389/fonc.2019.01223]
  155. Toh B, Wang X, Keeble J, Sim WJ, Khoo K, Wong WC, Kato M, Prevost-Blondel A, Thiery JP, Abastado JP (2011) Mesenchymal transition and dissemination of cancer cells is driven by myeloid-derived suppressor cells infiltrating the primary tumor. PLoS Biol 9(9):e1001162. https://doi.org/10.1371/journal.pbio.1001162 [DOI: 10.1371/journal.pbio.1001162]
  156. Trigunaite A, Khan A, Der E, Song A, Varikuti S, Jorgensen TN (2013) Gr-1CD11b+ cells suppress B cell differentiation and lupus-like disease in lupus-prone male mice. Arthritis Rheum 65(9):2392–2402. https://doi.org/10.1002/art.38048 [DOI: 10.1002/art.38048]
  157. Trovato R, Fiore A, Sartori S, Canè S, Giugno R, Cascione L, Paiella S, Salvia R, De Sanctis F, Poffe O, Anselmi C, Hofer F, Sartoris S, Piro G, Carbone C, Corbo V, Lawlor R, Solito S, Pinton L, Mandruzzato S, Bassi C, Scarpa A, Bronte V, Ugel S (2019) Immunosuppression by monocytic myeloid-derived suppressor cells in patients with pancreatic ductal carcinoma is orchestrated by STAT3. J Immunother Cancer 7(1):255. https://doi.org/10.1186/s40425-019-0734-6 [DOI: 10.1186/s40425-019-0734-6]
  158. Tsiganov EN, Verbina EM, Radaeva TV, Sosunov VV, Kosmiadi GA, Nikitina IY, Lyadova IV (2014) Gr-1dimCD11b+ immature myeloid-derived suppressor cells but not neutrophils are markers of lethal tuberculosis infection in mice. J Immunol 192(10):4718–4727. https://doi.org/10.4049/jimmunol.1301365 [DOI: 10.4049/jimmunol.1301365]
  159. Tu S, Bhagat G, Cui G, Takaishi S, Kurt-Jones EA, Rickman B, Betz KS, Penz-Oesterreicher M, Bjorkdahl O, Fox JG, Wang TC (2008) Overexpression of interleukin-1beta induces gastric inflammation and cancer and mobilizes myeloid-derived suppressor cells in mice. Cancer Cell 14(5):408–419. https://doi.org/10.1016/j.ccr.2008.10.011 [DOI: 10.1016/j.ccr.2008.10.011]
  160. Tu Z, Li Y, Smith D, Doller C, Sugita S, Chan CC, Qian S, Fung J, Caspi RR, Lu L, Lin F (2012) Myeloid suppressor cells induced by retinal pigment epithelial cells inhibit autoreactive T-cell responses that lead to experimental autoimmune uveitis. Invest Ophthalmol vis Sci 53(2):959–966. https://doi.org/10.1167/iovs.11-8377 [DOI: 10.1167/iovs.11-8377]
  161. Tumino N, Di Pace AL, Besi F, Quatrini L, Vacca P, Moretta L (2021) Interaction between MDSC and NK cells in solid and hematological malignancies: impact on HSCT. Front Immunol. https://doi.org/10.3389/fimmu.2021.638841 [DOI: 10.3389/fimmu.2021.638841]
  162. Turner MD, Nedjai B, Hurst T, Pennington DJ (2014) Cytokines and chemokines: at the crossroads of cell signalling and inflammatory disease. Biochim Biophys Acta (BBA) 1843(11):2563–2582. https://doi.org/10.1016/j.bbamcr.2014.05.014 [DOI: 10.1016/j.bbamcr.2014.05.014]
  163. Umansky V, Sevko A (2012) Melanoma-induced immunosuppression and its neutralization. Semin Cancer Biol 22(4):319–326. https://doi.org/10.1016/j.semcancer.2012.02.003 [DOI: 10.1016/j.semcancer.2012.02.003]
  164. Umansky V, Sevko A, Gebhardt C, Utikal J (2014) Myeloid-derived suppressor cells in malignant melanoma. J Dtsch Dermatol Ges 12(11):1021–1027. https://doi.org/10.1111/ddg.12411 [DOI: 10.1111/ddg.12411]
  165. Umansky V, Blattner C, Gebhardt C, Utikal J (2016) The role of myeloid-derived suppressor cells (MDSC) in cancer progression. Vaccines 4(4):36. https://doi.org/10.3390/vaccines4040036 [DOI: 10.3390/vaccines4040036]
  166. Ushach I, Zlotnik A (2016) Biological role of granulocyte macrophage colony-stimulating factor (GM-CSF) and macrophage colony-stimulating factor (M-CSF) on cells of the myeloid lineage. J Leukoc Biol 100(3):481–489. https://doi.org/10.1189/jlb.3RU0316-144R [DOI: 10.1189/jlb.3RU0316-144R]
  167. van Wigcheren GF, Cuenca-Escalona J, Stelloo S, Brake J, Peeters E, Horrevorts SK, Frolich S, Ramos-Tomillero I, Wesseling-Rozendaal Y, van Herpen CML, van de Stolpe A, Vermeulen M, de Vries IJM, Figdor CG, Florez-Grau G (2023) Myeloid-derived suppressor cells and tolerogenic dendritic cells are distinctively induced by PI3K and Wnt signaling pathways. J Biol Chem 299(11):105276. https://doi.org/10.1016/j.jbc.2023.105276 [DOI: 10.1016/j.jbc.2023.105276]
  168. Vasquez-Dunddel D, Pan F, Zeng Q, Gorbounov M, Albesiano E, Fu J, Blosser RL, Tam AJ, Bruno T, Zhang H, Pardoll D, Kim Y (2013) STAT3 regulates arginase-I in myeloid-derived suppressor cells from cancer patients. J Clin Invest 123(4):1580–1589. https://doi.org/10.1172/jci60083 [DOI: 10.1172/jci60083]
  169. Veglia F, Perego M, Gabrilovich D (2018) Myeloid-derived suppressor cells coming of age. Nat Immunol 19(2):108–119. https://doi.org/10.1038/s41590-017-0022-x [DOI: 10.1038/s41590-017-0022-x]
  170. Vetsika E-K, Koukos A, Kotsakis A (2019) Myeloid-derived suppressor cells: major figures that shape the immunosuppressive and angiogenic network in cancer. Cells 8(12):1647. https://doi.org/10.3390/cells8121647 [DOI: 10.3390/cells8121647]
  171. Vetter C, Schieb J, Vedder N, Lange T, Brunn T, van Geffen C, Gercke P, Kolahian S (2024) The impact of IL-10 and IL-17 on myeloid-derived suppressor cells in vitro and in vivo in a murine model of asthma. Eur J Immunol. https://doi.org/10.1002/eji.202350785 [DOI: 10.1002/eji.202350785]
  172. Vilgelm AE, Richmond A (2019) Chemokines modulate immune surveillance in tumorigenesis, metastasis, and response to immunotherapy. Front Immunol 10:333. https://doi.org/10.3389/fimmu.2019.00333 [DOI: 10.3389/fimmu.2019.00333]
  173. Waight JD, Netherby C, Hensen ML, Miller A, Hu Q, Liu S, Bogner PN, Farren MR, Lee KP, Liu K, Abrams SI (2013) Myeloid-derived suppressor cell development is regulated by a STAT/IRF-8 axis. J Clin Investig 123(10):4464–4478. https://doi.org/10.1172/JCI68189 [DOI: 10.1172/JCI68189]
  174. Wang Z, Jiang J, Li Z, Zhang J, Wang H, Qin Z (2010) A myeloid cell population induced by Freund adjuvant suppresses T-cell-mediated antitumor immunity. J Immunother 33(2):167–177. https://doi.org/10.1097/CJI.0b013e3181bed2ba [DOI: 10.1097/CJI.0b013e3181bed2ba]
  175. Wang Y, Ding Y, Guo N, Wang S (2019) MDSCs: key criminals of tumor pre-metastatic niche formation. Front Immunol 10:172. https://doi.org/10.3389/fimmu.2019.00172 [DOI: 10.3389/fimmu.2019.00172]
  176. Wang S, Tan Q, Hou Y, Dou H (2021) Emerging roles of myeloid-derived suppressor cells in diabetes. Front Pharmacol 12:798320. https://doi.org/10.3389/fphar.2021.798320 [DOI: 10.3389/fphar.2021.798320]
  177. Wang C, Zheng X, Zhang J, Jiang X, Wang J, Li Y, Li X, Shen G, Peng J, Zheng P, Gu Y, Chen J, Lin M, Deng C, Gao H, Lu Z, Zhao Y, Luo M (2023) CD300ld on neutrophils is required for tumour-driven immune suppression. Nature 621(7980):830–839. https://doi.org/10.1038/s41586-023-06511-9 [DOI: 10.1038/s41586-023-06511-9]
  178. Weber R, Fleming V, Hu X, Nagibin V, Groth C, Altevogt P, Utikal J, Umansky V (2018) Myeloid-derived suppressor cells hinder the anti-cancer activity of immune checkpoint inhibitors. Front Immunol 9:1310. https://doi.org/10.3389/fimmu.2018.01310 [DOI: 10.3389/fimmu.2018.01310]
  179. Weichhart T, Costantino G, Poglitsch M, Rosner M, Zeyda M, Stuhlmeier KM, Kolbe T, Stulnig TM, Horl WH, Hengstschlager M, Muller M, Saemann MD (2008) The TSC-mTOR signaling pathway regulates the innate inflammatory response. Immunity 29(4):565–577. https://doi.org/10.1016/j.immuni.2008.08.012 [DOI: 10.1016/j.immuni.2008.08.012]
  180. Wesolowski R, Markowitz J, Carson WE 3rd (2013) Myeloid derived suppressor cells—a new therapeutic target in the treatment of cancer. J Immunother Cancer 1:10–10. https://doi.org/10.1186/2051-1426-1-10 [DOI: 10.1186/2051-1426-1-10]
  181. Whitfield-Larry F, Felton J, Buse J, Su MA (2014) Myeloid-derived suppressor cells are increased in frequency but not maximally suppressive in peripheral blood of Type 1 Diabetes Mellitus patients. Clin Immunol 153(1):156–164. https://doi.org/10.1016/j.clim.2014.04.006 [DOI: 10.1016/j.clim.2014.04.006]
  182. Wu H, Zhen Y, Ma Z, Li H, Yu J, Xu ZG, Wang XY, Yi H, Yang YG (2016) Arginase-1-dependent promotion of TH17 differentiation and disease progression by MDSCs in systemic lupus erythematosus. Sci Transl Med 8(331):331340. https://doi.org/10.1126/scitranslmed.aae0482 [DOI: 10.1126/scitranslmed.aae0482]
  183. Wu X, Zhu D, Tian J, Tang X, Guo H, Ma J, Xu H, Wang S (2020) Granulocytic myeloid-derived suppressor cell exosomal prostaglandin E2 ameliorates collagen-induced arthritis by enhancing IL-10(+) B cells. Front Immunol 11:588500. https://doi.org/10.3389/fimmu.2020.588500 [DOI: 10.3389/fimmu.2020.588500]
  184. Wu Y, Yi M, Niu M, Mei Q, Wu K (2022a) Myeloid-derived suppressor cells: an emerging target for anticancer immunotherapy. Mol Cancer 21(1):184. https://doi.org/10.1186/s12943-022-01657-y [DOI: 10.1186/s12943-022-01657-y]
  185. Xin H, Zhang C, Herrmann A, Du Y, Figlin R, Yu H (2009) Sunitinib inhibition of Stat3 induces renal cell carcinoma tumor cell apoptosis and reduces immunosuppressive cells. Cancer Res 69(6):2506–2513. https://doi.org/10.1158/0008-5472.can-08-4323 [DOI: 10.1158/0008-5472.can-08-4323]
  186. Xiong X, Zhang Y, Wen Y (2024) Diverse functions of myeloid-derived suppressor cells in autoimmune diseases. Immunol Res 72(1):34–49. https://doi.org/10.1007/s12026-023-09421-0 [DOI: 10.1007/s12026-023-09421-0]
  187. Yang L, Huang J, Ren X, Gorska AE, Chytil A, Aakre M, Carbone DP, Matrisian LM, Richmond A, Lin PC, Moses HL (2008) Abrogation of TGF beta signaling in mammary carcinomas recruits Gr-1+CD11b+ myeloid cells that promote metastasis. Cancer Cell 13(1):23–35. https://doi.org/10.1016/j.ccr.2007.12.004 [DOI: 10.1016/j.ccr.2007.12.004]
  188. Yang F, Li Y, Wu T, Na N, Zhao Y, Li W, Han C, Zhang L, Lu J, Zhao Y (2016) TNFalpha-induced M-MDSCs promote transplant immune tolerance via nitric oxide. J Mol Med 94(8):911–920. https://doi.org/10.1007/s00109-016-1398-z [DOI: 10.1007/s00109-016-1398-z]
  189. Yang Z, Guo J, Weng L, Tang W, Jin S, Ma W (2020) Myeloid-derived suppressor cells-new and exciting players in lung cancer. J Hematol Oncol 13(1):10–10. https://doi.org/10.1186/s13045-020-0843-1 [DOI: 10.1186/s13045-020-0843-1]
  190. Yang F, Lee G, Fan Y (2024) Navigating tumor angiogenesis: therapeutic perspectives and myeloid cell regulation mechanism. Angiogenesis. https://doi.org/10.1007/s10456-024-09913-z [DOI: 10.1007/s10456-024-09913-z]
  191. Yi H, Guo C, Yu X, Zuo D, Wang XY (2012) Mouse CD11b+Gr-1+ myeloid cells can promote Th17 cell differentiation and experimental autoimmune encephalomyelitis. J Immunol 189(9):4295–4304. https://doi.org/10.4049/jimmunol.1200086 [DOI: 10.4049/jimmunol.1200086]
  192. Yin B, Ma G, Yen C-Y, Zhou Z, Wang GX, Divino CM, Casares S, Chen S-H, Yang W-C, Pan P-Y (2010) Myeloid-derived suppressor cells prevent type 1 diabetes in murine models. J Immunol 185(10):5828–5834. https://doi.org/10.4049/jimmunol.0903636 [DOI: 10.4049/jimmunol.0903636]
  193. Youn J-I, Gabrilovich DI (2010) The biology of myeloid-derived suppressor cells: the blessing and the curse of morphological and functional heterogeneity. Eur J Immunol 40(11):2969–2975. https://doi.org/10.1002/eji.201040895 [DOI: 10.1002/eji.201040895]
  194. Youn J-I, Nagaraj S, Collazo M, Gabrilovich DI (2008) Subsets of myeloid-derived suppressor cells in tumor-bearing mice. J Immunol 181(8):5791–5802. https://doi.org/10.4049/jimmunol.181.8.5791 [DOI: 10.4049/jimmunol.181.8.5791]
  195. Young MR, Wright MA, Matthews JP, Malik I, Prechel M (1996) Suppression of T cell proliferation by tumor-induced granulocyte-macrophage progenitor cells producing transforming growth factor-beta and nitric oxide. J Immunol 156(5):1916–1922. https://doi.org/10.4049/jimmunol.156.5.1916 [DOI: 10.4049/jimmunol.156.5.1916]
  196. Yu S, Ren X, Li L (2022) Myeloid-derived suppressor cells in hematologic malignancies: two sides of the same coin. Exp Hematol Oncol 11(1):43. https://doi.org/10.1186/s40164-022-00296-9 [DOI: 10.1186/s40164-022-00296-9]
  197. Zhang Z, Louboutin JP, Weiner DJ, Goldberg JB, Wilson JM (2005) Human airway epithelial cells sense Pseudomonas aeruginosa infection via recognition of flagellin by Toll-like receptor 5. Infect Immun 73(11):7151–7160. https://doi.org/10.1128/iai.73.11.7151-7160.2005 [DOI: 10.1128/iai.73.11.7151-7160.2005]
  198. Zhang W, Liang S, Wu J, Horuzsko A (2008) Human inhibitory receptor immunoglobulin-like transcript 2 amplifies CD11b+ Gr1+ myeloid-derived suppressor cells that promote long-term survival of allografts. Transplantation 86(8):1125–1134. https://doi.org/10.1097/TP.0b013e318186fccd [DOI: 10.1097/TP.0b013e318186fccd]
  199. Zhang G, Zhu X, Yang F, Li J, Leng X, Mo C, Li L, Wang Y (2022) Pseudolycorine chloride ameliorates Th17 cell-mediated central nervous system autoimmunity by restraining myeloid-derived suppressor cell expansion. Pharm Biol 60(1):899–908. https://doi.org/10.1080/13880209.2022.2063344 [DOI: 10.1080/13880209.2022.2063344]
  200. Zhang M, Shi X, Zhao J, Guo W, Zhou J (2023) Recruitment of myeloid-derived suppressor cells and regulatory T-cells is associated with the occurrence of acute myocardial infarction. Biomed Rep 19(2):55. https://doi.org/10.3892/br.2023.1637 [DOI: 10.3892/br.2023.1637]
  201. Zhang C, Sui Y, Liu S, Yang M (2024) The roles of myeloid-derived suppressor cells in liver disease. Biomedicines. https://doi.org/10.3390/biomedicines12020299 [DOI: 10.3390/biomedicines12020299]
  202. Zhao Y, Guo S, Deng J, Shen J, Du F, Wu X, Chen Y, Li M, Chen M, Li X, Li W, Gu L, Sun Y, Wen Q, Li J, Xiao Z (2022) VEGF/VEGFR-targeted therapy and immunotherapy in non-small cell lung cancer: targeting the tumor microenvironment. Int J Biol Sci 18(9):3845–3858. https://doi.org/10.7150/ijbs.70958 [DOI: 10.7150/ijbs.70958]
  203. Zhao Y, Du J, Shen X (2023) Targeting myeloid-derived suppressor cells in tumor immunotherapy: current, future and beyond. Front Immunol 14:1157537. https://doi.org/10.3389/fimmu.2023.1157537 [DOI: 10.3389/fimmu.2023.1157537]
  204. Zhou J, Donatelli SS, Gilvary DL, Tejera MM, Eksioglu EA, Chen X, Coppola D, Wei S, Djeu JY (2016) Therapeutic targeting of myeloid-derived suppressor cells involves a novel mechanism mediated by clusterin. Sci Rep 6:29521–29521. https://doi.org/10.1038/srep29521 [DOI: 10.1038/srep29521]
  205. Zhou J, Zhang M, Ju X, Wang H, Xiao H, Zhai Z, Zhong X, Hong J (2024) Increased monocytic myeloid-derived suppressor cells in type 2 diabetes correlate with hyperglycemic and was a risk factor of infection and tumor occurrence. Sci Rep 14(1):4384. https://doi.org/10.1038/s41598-024-54496-w [DOI: 10.1038/s41598-024-54496-w]
  206. Zhu B, Kennedy JK, Wang Y, Sandoval-Garcia C, Cao L, Xiao S, Wu C, Elyaman W, Khoury SJ (2011) Plasticity of Ly-6C(hi) myeloid cells in T cell regulation. J Immunol 187(5):2418–2432. https://doi.org/10.4049/jimmunol.1100403 [DOI: 10.4049/jimmunol.1100403]
  207. Ziegler C, Goldmann O, Hobeika E, Geffers R, Peters G, Medina E (2011) The dynamics of T cells during persistent Staphylococcus aureus infection: from antigen-reactivity to in vivo anergy. EMBO Mol Med 3(11):652–666. https://doi.org/10.1002/emmm.201100173 [DOI: 10.1002/emmm.201100173]

Grants

  1. NRF-2016R1A6A1A03007648/National Research Foundation of Korea

MeSH Term

Humans
Myeloid-Derived Suppressor Cells
Animals
Autoimmune Diseases
Neoplasms
Hypersensitivity

Word Cloud

Created with Highcharts 10.0.0MDSCscellsvariousconditionsrolessuppressorpathologicalautoimmuneMyeloid-deriveddisordersallergiesinfectionscancerplaydiseasereviewheterogeneouspopulationoriginatebonemarrowstemnormalmyelopoiesisalteredfacilitateformationfirstshownpromoteinitiationprogressionimmunosuppressionassistancechemokinescytokinesRecentlystudiesdemonstratedtwodistinctdependingphysiologicalprotectiveuveoretinitismultiplesclerosisrheumatoidarthritisankylosingspondylitistype1diabeteshepatitisinflammatorybowelalopeciaareatasystemiclupuserythematosusorgantransplantationHowevernegativecancersSeveralimmunosuppressivefunctionsmechanismsdetermineddifferentcomprehensivelydiscussesassociationsbrieflydescribestherapeuticapproachesDualmyeloid-deriveddiseases:AutoimmunediseasesCancerInflammationTherapeutics

Similar Articles

Cited By