NC Meets CN: Porous Photoanodes with Polymeric Carbon Nitride/ZnSe Nanocrystal Heterojunctions for Photoelectrochemical Applications.

Sanjit Mondal, Tom Naor, Michael Volokh, David Stone, Josep Albero, Adar Levi, Atzmon Vakahi, Hermenegildo Garc��a, Uri Banin, Menny Shalom
Author Information
  1. Sanjit Mondal: Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel.
  2. Tom Naor: The Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel. ORCID
  3. Michael Volokh: Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel. ORCID
  4. David Stone: The Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel. ORCID
  5. Josep Albero: Instituto Universitario de Tecnolog��a Qu��mica CSIC-UPV, Universitat Polit��cnica de Val��ncia, Val��ncia 46022, Spain. ORCID
  6. Adar Levi: The Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel. ORCID
  7. Atzmon Vakahi: The Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
  8. Hermenegildo Garc��a: Instituto Universitario de Tecnolog��a Qu��mica CSIC-UPV, Universitat Polit��cnica de Val��ncia, Val��ncia 46022, Spain. ORCID
  9. Uri Banin: The Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel. ORCID
  10. Menny Shalom: Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel. ORCID

Abstract

The utilization of photoelectrochemical cells (PEC) for converting solar energy into fuels (e.g., hydrogen) is a promising method for sustainable energy generation. We demonstrate a strategy to enhance the performance of PEC devices by integrating surface-functionalized zinc selenide (ZnSe) semiconductor nanocrystals (NCs) into porous polymeric Carbon Nitride (CN) matrices to form a uniformly distributed blend of NCs within the CN layer via electrophoretic deposition (EPD). The achieved type II heterojunction at the CN/NC interface exhibits intimate contact between the NCs and the CN backbone since it does not contain insulating binders. This configuration promotes efficient charge separation and suppresses carrier recombination. The reported CN/NC composite structure serves as a photoanode, demonstrating a photocurrent density of 160 �� 8 ��A cm at 1.23 V vs a reversible hydrogen electrode (RHE), 75% higher compared with a CN-based photoelectrode, for approximately 12 h. Spectral and photoelectrochemical analyses reveal extended photoresponse, reduced charge recombination, and successful charge transfer at the formed heterojunction; these properties result in enhanced PEC oxygen production activity with a Faradaic efficiency of 87%. The methodology allows the integration of high-quality colloidal NCs within porous CN-based photoelectrodes and provides numerous knobs for tuning the functionality of the composite systems, thus showing promise for achieving enhanced solar fuel production using PEC.

Keywords

References

  1. Nano Lett. 2012 Apr 11;12(4):2095-100 [PMID: 22452287]
  2. Ann N Y Acad Sci. 2023 Mar;1521(1):5-13 [PMID: 36719040]
  3. Adv Mater. 2024 Apr;36(14):e2307913 [PMID: 37756435]
  4. ACS Appl Mater Interfaces. 2018 Jun 27;10(25):21035-21055 [PMID: 29856204]
  5. Nat Mater. 2014 Nov;13(11):1013-8 [PMID: 25087066]
  6. J Am Chem Soc. 2021 May 19;143(19):7402-7413 [PMID: 33961743]
  7. Small. 2020 Mar;16(12):e1902231 [PMID: 31769587]
  8. J Colloid Interface Sci. 2023 Apr 15;636:363-377 [PMID: 36638575]
  9. Nano Lett. 2016 Mar 9;16(3):1776-81 [PMID: 26788824]
  10. Nat Commun. 2019 Aug 15;10(1):3687 [PMID: 31417082]
  11. Chem Soc Rev. 2014 Nov 21;43(22):7520-35 [PMID: 24413305]
  12. Angew Chem Int Ed Engl. 2019 Nov 11;58(46):16644-16650 [PMID: 31497911]
  13. Angew Chem Int Ed Engl. 2019 May 6;58(19):6138-6151 [PMID: 30020555]
  14. Small. 2023 Oct;19(42):e2303602 [PMID: 37344993]
  15. Nat Commun. 2020 Jun 17;11(1):3078 [PMID: 32555382]
  16. J Mater Chem A Mater. 2022 Jul 25;10(31):16585-16594 [PMID: 36091884]
  17. Nanotechnology. 2021 Jan 22;32(4):042003 [PMID: 33155576]
  18. ACS Nano. 2010 Oct 26;4(10):5962-8 [PMID: 20866044]
  19. ACS Appl Mater Interfaces. 2017 Nov 1;9(43):37671-37681 [PMID: 28975785]
  20. Adv Mater. 2018 Oct;30(41):e1706697 [PMID: 29656489]
  21. Angew Chem Int Ed Engl. 2019 Apr 1;58(15):5059-5063 [PMID: 30715778]
  22. Chem Rev. 2023 Apr 12;123(7):3790-3851 [PMID: 36735598]
  23. J Am Chem Soc. 2023 Oct 11;145(40):21886-21896 [PMID: 37768875]
  24. Nanomaterials (Basel). 2020 May 31;10(6): [PMID: 32486475]
  25. Nano Lett. 2020 Jun 10;20(6):4618-4624 [PMID: 32407122]
  26. J Am Chem Soc. 2011 Feb 2;133(4):998-1006 [PMID: 21175183]
  27. Chem Soc Rev. 2019 Oct 7;48(19):4979-5015 [PMID: 31483417]
  28. Top Curr Chem (Cham). 2016 Aug;374(4):54 [PMID: 27573406]
  29. Mater Horiz. 2023 Apr 3;10(4):1363-1372 [PMID: 36723245]
  30. Chem Soc Rev. 2018 Apr 3;47(7):2298-2321 [PMID: 29517786]
  31. Anal Chem. 2023 Sep 12;95(36):13716-13724 [PMID: 37650675]
  32. ACS Omega. 2019 Jul 17;4(7):12271-12277 [PMID: 31460343]
  33. J Am Chem Soc. 2022 Oct 12;144(40):18629-18641 [PMID: 36174102]
  34. Nat Commun. 2016 Jan 19;7:10413 [PMID: 26783194]

Word Cloud

Created with Highcharts 10.0.0PECNCsphotoelectrochemicalCNchargecellssolarenergyhydrogenZnSesemiconductornanocrystalsporouscarbonnitridewithinelectrophoreticdepositionheterojunctionCN/NCrecombinationcompositeCN-basedenhancedproductionutilizationconvertingfuelsegpromisingmethodsustainablegenerationdemonstratestrategyenhanceperformancedevicesintegratingsurface-functionalizedzincselenidepolymericmatricesformuniformlydistributedblendlayerviaEPDachievedtypeIIinterfaceexhibitsintimatecontactbackbonesincecontaininsulatingbindersconfigurationpromotesefficientseparationsuppressescarrierreportedstructureservesphotoanodedemonstratingphotocurrentdensity160��8��Acm123VvsreversibleelectrodeRHE75%highercomparedphotoelectrodeapproximately12hSpectralanalysesrevealextendedphotoresponsereducedsuccessfultransferformedpropertiesresultoxygenactivityFaradaicefficiency87%methodologyallowsintegrationhigh-qualitycolloidalphotoelectrodesprovidesnumerousknobstuningfunctionalitysystemsthusshowingpromiseachievingfuelusingNCMeetsCN:PorousPhotoanodesPolymericCarbonNitride/ZnSeNanocrystalHeterojunctionsPhotoelectrochemicalApplications

Similar Articles

Cited By

No available data.