Much attention is placed on organohalide-respiring bacteria (OHRB), such as Dehalococcoides, during the design and performance monitoring of chlorinated solvent bioremediation systems. However, many OHRB cannot function effectively without the support of a diverse group of other microbial community members (MCMs), who play key roles fermenting organic matter into more readily useable electron donors, producing corrinoids such as vitamin B12, or facilitating other important metabolic processes or biochemical reactions. While it is known that certain MCMs support dechlorination, a metric considering their contribution to bioremediation performance has yet to be proposed. Advances in molecular biology tools offer an opportunity to better understand the presence and activity of specific microbes, and their relation to bioremediation performance. In this paper, we test the hypothesis that a specific microbial consortium identified within 16S ribosomal ribonucleic acid (rRNA) gene next generation sequencing (NGS) data can be predictive of contaminant degradation rates. Field-based data from multiple contaminated sites indicate that increasing relative abundance of specific MCMs correlates with increasing first-order degradation rates. Based on these results, we present a framework for computing a simplified metric using NGS data, the Microbial Community Structure Index, to evaluate the adequacy of the microbial ecosystem during assessment of bioremediation performance.
Adrian L, Löffler FE (eds) (2016) Organohalide-respiring bacteria. Springer, Berlin
Alishum A (2019) DADA2 formatted 16S rRNA gene sequences for both bacteria & archaea. Res. Data. https://scholar.google.com/scholar?cluster=16392786386898856133&hl=en&as_sdt=4005&sciodt=0,6
Beaty PS, McInerney MJ (1990) Nutritional features of Syntrophomonas wolfei. Appl Environ Microbiol 56:3223–3224. https://doi.org/10.1128/aem.56.10.3223-3224.1990
[DOI: 10.1128/aem.56.10.3223-3224.1990]
Beech IB, Zinkevich V, Tapper R et al (1999) Study of the interaction of sulphate-reducing bacteria exopolymers with iron using X-ray photoelectron spectroscopy and time-of-flight secondary ionisation mass spectrometry. J Microbiol Method 36:3–10. https://doi.org/10.1016/S0167-7012(99)00005-6
[DOI: 10.1016/S0167-7012(99)00005-6]
Bowman KS, Rainey FA, Moe WM (2009) Production of hydrogen by Clostridium species in the presence of chlorinated solvents. FEMS Microbiol Lett 290:188–194. https://doi.org/10.1111/j.1574-6968.2008.01419.x
[DOI: 10.1111/j.1574-6968.2008.01419.x]
Ding C, Zhao S, He J (2014) A Desulfitobacterium sp. strain PR reductively dechlorinates both 1,1,1-trichloroethane and chloroform. Environ Microbiol 16:3387–3397. https://doi.org/10.1111/1462-2920.12387
[DOI: 10.1111/1462-2920.12387]
Dolfing J (2016) Energetic considerations in organohalide respiration. In: Adrian L, Löffler FE (eds) organohalide-respiring bacteria. Springer, Berlin, pp 31–48
[DOI: 10.1007/978-3-662-49875-0_3]
Dong Y, Butler EC, Philp RP, Krumholz LR (2011) Impacts of microbial community composition on isotope fractionation during reductive dechlorination of tetrachloroethylene. Biodegradation 22:431–444. https://doi.org/10.1007/s10532-010-9416-2
[DOI: 10.1007/s10532-010-9416-2]
Duhamel M, Edwards EA (2006) Microbial composition of chlorinated ethene-degrading cultures dominated by Dehalococcoides: quantitative PCR of dechlorinating cultures. FEMS Microbiol Ecol 58:538–549. https://doi.org/10.1111/j.1574-6941.2006.00191.x
[DOI: 10.1111/j.1574-6941.2006.00191.x]
Duhamel M, Mo K, Edwards EA (2004) Characterization of a highly enriched Dehalococcoides-containing culture that grows on vinyl chloride and trichloroethene. Appl Environ Microbiol 70:5538–5545. https://doi.org/10.1128/AEM.70.9.5538-5545.2004
[DOI: 10.1128/AEM.70.9.5538-5545.2004]
Fletcher KE, Ritalahti KM, Pennell KD et al (2008) Resolution of culture Clostridium bifermentans DPH-1 into two populations, a Clostridium sp. and tzthene-dechlorinating Desulfitobacterium hafniense Strain JH1. Appl Environ Microbiol 74:6141–6143. https://doi.org/10.1128/AEM.00994-08
[DOI: 10.1128/AEM.00994-08]
Fredrickson JK, Romine MF, Beliaev AS et al (2008) Towards environmental systems biology of Shewanella. Nat Rev Microbiol 6:592–603. https://doi.org/10.1038/nrmicro1947
[DOI: 10.1038/nrmicro1947]
Freeborn RA, West KA, Bhupathiraju VK et al (2005) Phylogenetic analysis of TCE-dechlorinating consortia enriched on a variety of electron donors. Environ Sci Technol 39:8358–8368. https://doi.org/10.1021/es048003p
[DOI: 10.1021/es048003p]
Gamlin J, Downey D, Shearer B, Favara P (2017) Design and performance of subgrade biogeochemical reactors. J Environ Manage 204:804–812. https://doi.org/10.1016/j.jenvman.2017.02.036
[DOI: 10.1016/j.jenvman.2017.02.036]
Gamlin J, Cox J, Castor A (2019) Innovative applications of subgrade biogeochemical reactors: three case studies. Remediat J 29:33–43. https://doi.org/10.1002/rem.21586
[DOI: 10.1002/rem.21586]
Gregson BH, Bani A, Steinfield L et al (2022) Anaerobes and methanogens dominate the microbial communities in water harvesting ponds used by Kenyan rural smallholder farmers. Sci Total Environ 819:153040. https://doi.org/10.1016/j.scitotenv.2022.153040
[DOI: 10.1016/j.scitotenv.2022.153040]
Guimarães DH, Weber A, Klaiber I et al (1994) Guanylcobamide and hypoxanthylcobamide-corrinoids formed by Desulfovibrio vulgaris. Arch Microbiol 162:272–276. https://doi.org/10.1007/BF00301850
[DOI: 10.1007/BF00301850]
He J, Ritalahti KM, Aiello MR, Löffler FE (2003a) Complete detoxification of vinyl chloride by an anaerobic enrichment culture and identification of the reductively dechlorinating population as a Dehalococcoides species. Appl Environ Microbiol 69:996–1003. https://doi.org/10.1128/AEM.69.2.996-1003.2003
[DOI: 10.1128/AEM.69.2.996-1003.2003]
He J, Ritalahti KM, Yang K-L et al (2003b) Detoxification of vinyl chloride to ethene coupled to growth of an anaerobic bacterium. Nature 424:62–65. https://doi.org/10.1038/nature01717
[DOI: 10.1038/nature01717]
He J, Sung Y, Krajmalnik-Brown R et al (2005) Isolation and characterization of Dehalococcoides sp. strain FL2, a trichloroethene (TCE)- and 1,2-dichloroethene-respiring anaerobe. Environ Microbiol 7:1442–1450. https://doi.org/10.1111/j.1462-2920.2005.00830.x
[DOI: 10.1111/j.1462-2920.2005.00830.x]
He J, Holmes VF, Lee PKH, Alvarez-Cohen L (2007) Influence of vitamin B and cocultures on the growth of Dehalococcoides isolates in defined medium. Appl Environ Microbiol 73:2847–2853. https://doi.org/10.1128/AEM.02574-06
[DOI: 10.1128/AEM.02574-06]
He YT, Wilson JT, Wilkin RT (2008) Transformation of reactive iron minerals in a permeable reactive barrier (Biowall) used to treat TCE in groundwater. Environ Sci Technol 42:6690–6696. https://doi.org/10.1021/es8010354
[DOI: 10.1021/es8010354]
Hickey WJ (2021) Biodegradation of environmental pollutants. Principles and applications of soil microbiology. Elsevier, Amsterdam, pp 581–605
[DOI: 10.1016/B978-0-12-820202-9.00021-6]
Im W-T, Kim S-H, Kim MK et al (2006) Pleomorphomonas koreensis sp. nov., a nitrogen-fixing species in the order Rhizobiales. Int J Syst Evol Microbiol 56:1663–1666. https://doi.org/10.1099/ijs.0.63499-0
[DOI: 10.1099/ijs.0.63499-0]
Kim B-R, Shin J, Guevarra RB et al (2017) Deciphering diversity indices for a better understanding of microbial communities. J Microbiol Biotechnol 27:2089–2093. https://doi.org/10.4014/jmb.1709.09027
[DOI: 10.4014/jmb.1709.09027]
Lee PKH, Johnson DR, Holmes VF et al (2006) Reductive dehalogenase gene expression as a biomarker for physiological activity of Dehalococcoides spp. Appl Environ Microbiol 72:6161–6168. https://doi.org/10.1128/AEM.01070-06
[DOI: 10.1128/AEM.01070-06]
Lee J, Lee TK, Löffler FE, Park J (2011) Characterization of microbial community structure and population dynamics of tetrachloroethene-dechlorinating tidal mudflat communities. Biodegradation 22:687–698. https://doi.org/10.1007/s10532-010-9429-x
[DOI: 10.1007/s10532-010-9429-x]
Lin C (2004) Fermentative hydrogen production at ambient temperature. Int J Hydrog Energy 29:715–720. https://doi.org/10.1016/j.ijhydene.2003.09.002
[DOI: 10.1016/j.ijhydene.2003.09.002]
Liu G, Shen J (2004) Effects of culture and medium conditions on hydrogen production from starch using anaerobic bacteria. J Biosci Bioeng 98:251–256. https://doi.org/10.1016/S1389-1723(04)00277-4
[DOI: 10.1016/S1389-1723(04)00277-4]
Lucas R, Groeneveld J, Harms H et al (2017) A critical evaluation of ecological indices for the comparative analysis of microbial communities based on molecular datasets. FEMS Microbiol Ecol 93:209. https://doi.org/10.1093/femsec/fiw209
[DOI: 10.1093/femsec/fiw209]
Mao X, Stenuit B, Tremblay J et al (2019) Structural dynamics and transcriptomic analysis of Dehalococcoides mccartyi within a TCE-Dechlorinating community in a completely mixed flow reactor. Water Res 158:146–156. https://doi.org/10.1016/j.watres.2019.04.038
[DOI: 10.1016/j.watres.2019.04.038]
Marietou A, Kjeldsen KU, Glombitza C, Jørgensen BB (2022) Response to substrate limitation by a marine sulfate-reducing bacterium. ISME J 16:200–210. https://doi.org/10.1038/s41396-021-01061-2
[DOI: 10.1038/s41396-021-01061-2]
Maymó-Gatell X, Chien Y, Gossett JM, Zinder SH (1997) Isolation of a bacterium that reductively dechlorinates tetrachloroethene to ethene. Science 276:1568–1571. https://doi.org/10.1126/science.276.5318.1568
[DOI: 10.1126/science.276.5318.1568]
Men Y, Feil H, VerBerkmoes NC et al (2012) Sustainable syntrophic growth of Dehalococcoides ethenogenes strain 195 with Desulfovibrio vulgaris Hildenborough and Methanobacterium congolense: global transcriptomic and proteomic analyses. ISME J 6:410–421. https://doi.org/10.1038/ismej.2011.111
[DOI: 10.1038/ismej.2011.111]
Men Y, Lee PKH, Harding KC, Alvarez-Cohen L (2013) Characterization of four TCE-dechlorinating microbial enrichments grown with different cobalamin stress and methanogenic conditions. Appl Microbiol Biotechnol 97:6439–6450. https://doi.org/10.1007/s00253-013-4896-8
[DOI: 10.1007/s00253-013-4896-8]
Meng L, Yoshida N, Li Z (2022) Soil microorganisms facilitated the electrode-driven trichloroethene dechlorination to ethene by Dehalococcoides species in a bioelectrochemical system. Environ Res 209:112801. https://doi.org/10.1016/j.envres.2022.112801
[DOI: 10.1016/j.envres.2022.112801]
Miyamoto H, Asano F, Ishizawa K et al (2022) A potential network structure of symbiotic bacteria involved in carbon and nitrogen metabolism of wood-utilizing insect larvae. Sci Total Environ 836:155520. https://doi.org/10.1016/j.scitotenv.2022.155520
[DOI: 10.1016/j.scitotenv.2022.155520]
Newell CJ, Rifai HS, Wilson JT et al (2002) Calculation and use of first-order rate constants for monitored natural attenuation studies. Ground water issue. US Environmental Protection Agency, Washington DC
Pankratov TA, Dedysh SN (2010) Granulicella paludicola gen. nov., sp. nov., Granulicella pectinivorans sp. nov., Granulicella aggregans sp. nov. and Granulicella rosea sp. nov., acidophilic, polymer-degrading acidobacteria from Sphagnum peat bogs. Int J Syst Evol Microbiol 60:2951–2959. https://doi.org/10.1099/ijs.0.021824-0
[DOI: 10.1099/ijs.0.021824-0]
Picard A, Gartman A, Clarke DR, Girguis PR (2018) Sulfate-reducing bacteria influence the nucleation and growth of mackinawite and greigite. Geochim Cosmochim Acta 220:367–384. https://doi.org/10.1016/j.gca.2017.10.006
[DOI: 10.1016/j.gca.2017.10.006]
Puentes Jácome LA, Wang P-H, Molenda O et al (2019) Sustained dechlorination of vinyl chloride to ethene in Dehalococcoides -enriched cultures grown without addition of exogenous vitamins and at low pH. Environ Sci Technol 53:11364–11374. https://doi.org/10.1021/acs.est.9b02339
[DOI: 10.1021/acs.est.9b02339]
Renz P (1999) Biosynthesis of the 5,6-dimethylbenzimidazole moiety of cobalamin and of the other bases found in natural corrinoids. In: Banerjee R (ed) Chemistry and biochemistry of B12. pp 557–57
Richardson RE, Bhupathiraju VK, Song DL et al (2002) Phylogenetic characterization of microbial communities that reductively dechlorinate TCE based upon a combination of molecular techniques. Environ Sci Technol 36:2652–2662. https://doi.org/10.1021/es0157797
[DOI: 10.1021/es0157797]
Ritalahti KM, Löffler FE (2004) Populations Implicated in anaerobic reductive dechlorination of 1,2-dichloropropane in highly enriched bacterial communities. Appl Environ Microbiol 70:4088–4095. https://doi.org/10.1128/AEM.70.7.4088-4095.2004
[DOI: 10.1128/AEM.70.7.4088-4095.2004]
Rossetti S, Blackall LL, Majone M et al (2003) Kinetic and phylogenetic characterization of an anaerobic dechlorinating microbial community. Microbiology 149:459–469. https://doi.org/10.1099/mic.0.26018-0
[DOI: 10.1099/mic.0.26018-0]
RStudio team (2022) RStudio: integrated development for R.
Schiel-Bengelsdorf B, Dürre P (2012) Pathway engineering and synthetic biology using acetogens. FEBS Lett 586:2191–2198. https://doi.org/10.1016/j.febslet.2012.04.043
[DOI: 10.1016/j.febslet.2012.04.043]
Schmid J, Sieber V (2015) Enzymatic transformations involved in the biosynthesis of microbial exo-polysaccharides based on the assembly of repeat units. ChemBioChem 16:1141–1147. https://doi.org/10.1002/cbic.201500035
[DOI: 10.1002/cbic.201500035]
Sharma B, Shukla P (2020) Designing synthetic microbial communities for effectual bioremediation: a review. Biocatal Biotransformation 38:405–414. https://doi.org/10.1080/10242422.2020.1813727
[DOI: 10.1080/10242422.2020.1813727]
Sharma P, Singh SP (2022) Identification and profiling of microbial community from industrial sludge. Arch Microbiol 204:234. https://doi.org/10.1007/s00203-022-02831-y
[DOI: 10.1007/s00203-022-02831-y]
Sharma P, Pandey AK, Kim S-H et al (2021) Critical review on microbial community during in-situ bioremediation of heavy metals from industrial wastewater. Environ Technol Innov 24:101826. https://doi.org/10.1016/j.eti.2021.101826
[DOI: 10.1016/j.eti.2021.101826]
Shekhar SK, Godheja J, Modi DR (2020) Molecular technologies for assessment of bioremediation and characterization of microbial communities at pollutant-contaminated sites. In: Bharagava RN, Saxena G (eds) Bioremediation of industrial waste for environmental safety. Springer Singapore, Singapore
Singh CK, Sodhi KK, Singh DK (2023) Understanding the bacterial community structure associated with the Eichhornia crassipes rootzone. Mol Biol Rep 51:35. https://doi.org/10.1007/s11033-023-08979-0
[DOI: 10.1007/s11033-023-08979-0]
Slatko BE, Gardner AF, Ausubel FM (2018) Overview of next-generation sequencing technologies. Curr Protoc Mol Biol 122:e59. https://doi.org/10.1002/cpmb.59
[DOI: 10.1002/cpmb.59]
Sodhi KK, Singh CK, Kumar M, Singh DK (2023) Whole-genome sequencing of alcaligenes sp. strain MMA insight into the antibiotic and heavy metal resistant genes. Front Pharmacol. https://doi.org/10.3389/fphar.2023.1144561
[DOI: 10.3389/fphar.2023.1144561]
Sousa DZ, Smidt H, Alves MM, Stams AJM (2007) Syntrophomonas zehnderi sp. nov., an anaerobe that degrades long-chain fatty acids in co-culture with Methanobacterium formicicum. Int J Syst Evol Microbiol 57:609–615. https://doi.org/10.1099/ijs.0.64734-0
[DOI: 10.1099/ijs.0.64734-0]
Stupperich E, Eisinger HJ, Kräutler B (1988) Diversity of corrinoids in acetogenic bacteria: P-cresolylcobamide from Sporomusa ovata, 5-methoxy-6-methylbenzimidazolylcobamide from Clostridium formicoaceticum and vitamin B from Acetobacterium woodii. Eur J Biochem 172:459–464. https://doi.org/10.1111/j.1432-1033.1988.tb13910.x
[DOI: 10.1111/j.1432-1033.1988.tb13910.x]
Sung Y, Fletcher KE, Ritalahti KM et al (2006a) Geobacter lovleyi sp. nov. Strain SZ, a novel metal-reducing and tetrachloroethene-dechlorinating bacterium. Appl Environ Microbiol 72:2775–2782. https://doi.org/10.1128/AEM.72.4.2775-2782.2006
[DOI: 10.1128/AEM.72.4.2775-2782.2006]
Sung Y, Ritalahti KM, Apkarian RP, Löffler FE (2006b) Quantitative PCR confirms purity of strain GT, a novel trichloroethene-to-ethene-respiring dehalococcoides isolate. Appl Environ Microbiol 72:1980–1987. https://doi.org/10.1128/AEM.72.3.1980-1987.2006
[DOI: 10.1128/AEM.72.3.1980-1987.2006]
Tukanghan W, Hupfauf S, Gómez-Brandón M et al (2021) Symbiotic bacteroides and clostridium-rich methanogenic consortium enhanced biogas production of high-solid anaerobic digestion systems. Bioresour Technol Rep 14:100685. https://doi.org/10.1016/j.biteb.2021.100685
[DOI: 10.1016/j.biteb.2021.100685]
Türkowsky D, Jehmlich N, Diekert G et al (2018) An integrative overview of genomic, transcriptomic and proteomic analyses in organohalide respiration research. FEMS Microbiol Ecol. https://doi.org/10.1093/femsec/fiy013
[DOI: 10.1093/femsec/fiy013]
Vandermeeren P, Herrmann S, Cichocka D et al (2014) Diversity of dechlorination pathways and organohalide respiring bacteria in chlorobenzene dechlorinating enrichment cultures originating from river sludge. Biodegradation 25:757–776. https://doi.org/10.1007/s10532-014-9697-y
[DOI: 10.1007/s10532-014-9697-y]
Wei N, Finneran KT (2013) Low and high acetate amendments are equally as effective at promoting complete dechlorination of trichloroethylene (TCE). Biodegradation 24:413–425. https://doi.org/10.1007/s10532-012-9598-x
[DOI: 10.1007/s10532-012-9598-x]
Wen L-L, Zhang Y, Pan Y-W et al (2015) The roles of methanogens and acetogens in dechlorination of trichloroethene using different electron donors. Environ Sci Pollut Res 22:19039–19047. https://doi.org/10.1007/s11356-015-5117-z
[DOI: 10.1007/s11356-015-5117-z]
Wu Y, Luo Y, Zou D et al (2008) Bioremediation of polycyclic aromatic hydrocarbons contaminated soil with Monilinia sp.: degradation and microbial community analysis. Biodegradation 19:247–257. https://doi.org/10.1007/s10532-007-9131-9
[DOI: 10.1007/s10532-007-9131-9]
Xu X, Gao B, Jin B et al (2015) Study of microbial perchlorate reduction: considering of multiple pH, electron acceptors and donors. J Hazard Mater 285:228–235. https://doi.org/10.1016/j.jhazmat.2014.10.061
[DOI: 10.1016/j.jhazmat.2014.10.061]
Yan J, Rash BA, Rainey FA, Moe WM (2009) Isolation of novel bacteria within the Chloroflexi capable of reductive dechlorination of 1,2,3-trichloropropane. Environ Microbiol 11:833–843. https://doi.org/10.1111/j.1462-2920.2008.01804.x
[DOI: 10.1111/j.1462-2920.2008.01804.x]
Yan J, Wang J, Villalobos Solis MI et al (2021) Respiratory vinyl chloride reductive dechlorination to ethene in TceA-expressing Dehalococcoides mccartyi. Environ Sci Technol 55:4831–4841. https://doi.org/10.1021/acs.est.0c07354
[DOI: 10.1021/acs.est.0c07354]
Ye L, Schilhabel A, Bartram S et al (2010) Reductive dehalogenation of brominated ethenes by Sulfurospirillum multivorans and Desulfitobacterium hafniense PCE-S. Environ Microbiol 12:501–509. https://doi.org/10.1111/j.1462-2920.2009.02093.x
[DOI: 10.1111/j.1462-2920.2009.02093.x]
Zhou H, Xu G (2020) Biofilm characteristics, microbial community structure and function of an up-flow anaerobic filter-biological aerated filter (UAF-BAF) driven by COD/N ratio. Sci Total Environ 708:134422. https://doi.org/10.1016/j.scitotenv.2019.134422
[DOI: 10.1016/j.scitotenv.2019.134422]
Grants
Contract W912QR-12-D-0005/U.S. Air Force and U.S. Army Corps of Engineers