Controlled Noise: Evidence of epigenetic regulation of Single-Cell expression variability.

Yan Zhong, Siwei Cui, Yongjian Yang, James J Cai
Author Information
  1. Yan Zhong: School of Statistics, KLATASDS-MOE, East China Normal University, Shanghai, China.
  2. Siwei Cui: School of Statistics, KLATASDS-MOE, East China Normal University, Shanghai, China.
  3. Yongjian Yang: Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843, USA.
  4. James J Cai: Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843, USA.

Abstract

MOTIVATION: Understanding single-cell expression variability (scEV) or gene expression noise among cells of the same type and state is crucial for delineating population-level cellular function. While epigenetic mechanisms are widely implicated in gene expression regulation, a definitive link between chromatin accessibility and scEV remains elusive. Recent advances in single-cell techniques enable the study of single-cell multiomics data that include the simultaneous measurement of scATAC-seq and scRNA-seq within individual cells, presenting an unprecedented opportunity to address this gap.
RESULTS: This paper introduces an innovative testing pipeline to investigate the association between chromatin accessibility and scEV. With single-cell multiomics data of scATAC-seq and scRNA-seq, the pipeline hinges on comparing the prediction performance of scATAC-seq data on gene expression levels between highly variable genes (HVGs) and non-highly variable genes (non-HVGs). Applying this pipeline to paired scATAC-seq and scRNA-seq data from human hematopoietic stem and progenitor cells, we observed a significantly superior prediction performance of scATAC-seq data for HVGs compared to non-HVGs. Notably, there was substantial overlap between well-predicted genes and HVGs. The gene pathways enriched from well-predicted genes are highly pertinent to cell type-specific functions. Our findings support the notion that scEV largely stems from cell-to-cell variability in chromatin accessibility, providing compelling evidence for the epigenetic regulation of scEV and offering promising avenues for investigating gene regulation mechanisms at the single-cell level.
AVAILABILITY: The source code and data used in this paper can be found at https://github.com/SiweiCui/EpigeneticControlOfSingle-CellExpressionVariability.
SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

References

  1. Blood. 2013 Jan 10;121(2):403-15 [PMID: 23074273]
  2. Proc Natl Acad Sci U S A. 2021 Apr 13;118(15): [PMID: 33827925]
  3. Methods Mol Biol. 2014;1124:3-10 [PMID: 24504942]
  4. Nat Rev Genet. 2019 Sep;20(9):536-548 [PMID: 31114032]
  5. Brief Bioinform. 2023 Sep 22;24(6): [PMID: 37798250]
  6. Cell Syst. 2023 Apr 19;14(4):302-311.e4 [PMID: 36787742]
  7. Bioinformatics. 2019 Nov 07;: [PMID: 31697351]
  8. Science. 2018 Sep 28;361(6409):1380-1385 [PMID: 30166440]
  9. Nucleic Acids Res. 2016 Jul 8;44(W1):W90-7 [PMID: 27141961]
  10. Breast Cancer Res Treat. 2021 Sep;189(2):363-375 [PMID: 34287743]
  11. Front Genet. 2014 Apr 10;5:75 [PMID: 24782889]
  12. Blood. 2018 Jul 12;132(2):123-131 [PMID: 29866813]
  13. Nat Protoc. 2009;4(8):1184-91 [PMID: 19617889]
  14. Immunity. 2007 Jun;26(6):726-40 [PMID: 17582345]
  15. Nat Methods. 2021 Nov;18(11):1333-1341 [PMID: 34725479]
  16. Nat Genet. 2021 Mar;53(3):403-411 [PMID: 33633365]
  17. Nat Genet. 2024 Apr;56(4):627-636 [PMID: 38514783]
  18. Nature. 2015 Jul 23;523(7561):486-90 [PMID: 26083756]
  19. Bioessays. 2016 Feb;38(2):172-80 [PMID: 26625861]
  20. Nat Rev Mol Cell Biol. 2011 Feb;12(2):119-25 [PMID: 21224886]
  21. Cell. 2021 Jun 24;184(13):3573-3587.e29 [PMID: 34062119]
  22. Nat Biotechnol. 2018 Jun;36(5):411-420 [PMID: 29608179]
  23. Brief Bioinform. 2021 Nov 5;22(6): [PMID: 34351383]
  24. Cells. 2019 Dec 19;9(1): [PMID: 31861624]
  25. Life Sci Alliance. 2023 Oct 25;7(1): [PMID: 37879938]
  26. Genome Biol. 2023 Oct 20;24(1):238 [PMID: 37864221]
  27. Blood. 2015 Sep 3;126(10):1224-33 [PMID: 26209658]
  28. Cell Rep. 2020 Sep 1;32(9):108051 [PMID: 32877665]
  29. Cell. 2019 Jun 13;177(7):1888-1902.e21 [PMID: 31178118]
  30. Genes (Basel). 2022 Feb 18;13(2): [PMID: 35205415]
  31. Patterns (N Y). 2022 Feb 01;3(3):100434 [PMID: 35510185]
  32. Cell Genom. 2022 Sep 14;2(9): [PMID: 36204155]
  33. Nat Biotechnol. 2015 May;33(5):495-502 [PMID: 25867923]

Word Cloud

Created with Highcharts 10.0.0datasingle-cellexpressionscEVgenescATAC-seqregulationgenesvariabilitycellsepigeneticchromatinaccessibilityscRNA-seqpipelineHVGsmechanismsmultiomicspaperpredictionperformancehighlyvariablenon-HVGswell-predictedMOTIVATION:Understandingnoiseamongtypestatecrucialdelineatingpopulation-levelcellularfunctionwidelyimplicateddefinitivelinkremainselusiveRecentadvancestechniquesenablestudyincludesimultaneousmeasurementwithinindividualpresentingunprecedentedopportunityaddressgapRESULTS:introducesinnovativetestinginvestigateassociationhingescomparinglevelsnon-highlyApplyingpairedhumanhematopoieticstemprogenitorobservedsignificantlysuperiorcomparedNotablysubstantialoverlappathwaysenrichedpertinentcelltype-specificfunctionsfindingssupportnotionlargelystemscell-to-cellprovidingcompellingevidenceofferingpromisingavenuesinvestigatinglevelAVAILABILITY:sourcecodeusedcanfoundhttps://githubcom/SiweiCui/EpigeneticControlOfSingle-CellExpressionVariabilitySUPPLEMENTARYINFORMATION:SupplementaryavailableBioinformaticsonlineControlledNoise:EvidenceSingle-Cell

Similar Articles

Cited By (1)