A ~40-kb flavi-like virus does not encode a known error-correcting mechanism.

Mary E Petrone, Joe Grove, Julien Mélade, Jonathon C O Mifsud, Rhys H Parry, Ezequiel M Marzinelli, Edward C Holmes
Author Information
  1. Mary E Petrone: Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia. ORCID
  2. Joe Grove: MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, United Kingdom.
  3. Julien Mélade: Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia.
  4. Jonathon C O Mifsud: Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia. ORCID
  5. Rhys H Parry: School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4067, Australia. ORCID
  6. Ezequiel M Marzinelli: School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia. ORCID
  7. Edward C Holmes: Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia. ORCID

Abstract

It is commonly held that there is a fundamental relationship between genome size and error rate, manifest as a notional "error threshold" that sets an upper limit on genome sizes. The genome sizes of RNA viruses, which have intrinsically high mutation rates due to a lack of mechanisms for error correction, must therefore be small to avoid accumulating an excessive number of deleterious mutations that will ultimately lead to population extinction. The proposed exceptions to this evolutionary rule are RNA viruses from the order (such as coronaviruses) that encode error-correcting exonucleases, enabling them to reach genome lengths greater than 40 kb. The recent discovery of large-genome flavi-like viruses (), which comprise genomes up to 27 kb in length yet seemingly do not encode exonuclease domains, has led to the proposal that a proofreading mechanism is required to facilitate the expansion of nonsegmented RNA virus genomes above 30 kb. Herein, we describe a ~40 kb flavi-like virus identified in a sponge metatranscriptome that does not encode a known exonuclease. Structural analysis revealed that this virus may have instead captured cellular domains associated with nucleic acid metabolism that have not been previously found in RNA viruses. Phylogenetic inference placed this virus as a divergent pesti-like lineage, such that we have provisionally termed it "Maximus pesti-like virus." This virus represents an instance of a flavi-like virus achieving a genome size comparable to that of the and demonstrates that RNA viruses have evolved multiple solutions to overcome the error threshold.

Keywords

References

  1. PLoS Biol. 2023 Jul 11;21(7):e3002174 [PMID: 37432947]
  2. Nucleic Acids Res. 2011 Jul;39(Web Server issue):W29-37 [PMID: 21593126]
  3. Curr Opin Struct Biol. 2010 Dec;20(6):693-701 [PMID: 20705454]
  4. Pac Symp Biocomput. 2002;:310-22 [PMID: 11928486]
  5. PLoS Pathog. 2013 Aug;9(8):e1003565 [PMID: 23966862]
  6. Bioinformatics. 2009 Aug 1;25(15):1972-3 [PMID: 19505945]
  7. Nature. 2023 Nov;623(7987):594-600 [PMID: 37748513]
  8. Bioinformatics. 2012 Dec 1;28(23):3150-2 [PMID: 23060610]
  9. PLoS One. 2014 Nov 24;9(11):e113201 [PMID: 25419713]
  10. Trends Biochem Sci. 2021 Nov;46(11):866-877 [PMID: 34172362]
  11. Science. 2023 Mar 17;379(6637):1123-1130 [PMID: 36927031]
  12. PLoS Genet. 2007 Jun;3(6):e93 [PMID: 17571922]
  13. PLoS One. 2017 Oct 26;12(10):e0185056 [PMID: 29073143]
  14. PLoS Pathog. 2013;9(12):e1003760 [PMID: 24348241]
  15. Genome Biol. 2020 Apr 28;21(1):103 [PMID: 32345331]
  16. J Mol Biol. 2018 Jul 20;430(15):2237-2243 [PMID: 29258817]
  17. Nat Protoc. 2015 Jun;10(6):845-58 [PMID: 25950237]
  18. Mol Syst Biol. 2011 Oct 11;7:539 [PMID: 21988835]
  19. J Virol. 2015 Oct 21;90(2):659-69 [PMID: 26491167]
  20. Bioinformatics. 2012 Dec 15;28(24):3211-7 [PMID: 23071270]
  21. Nucleic Acids Res. 2010 Jan;38(Database issue):D211-22 [PMID: 19920124]
  22. Mol Biol Evol. 2013 Apr;30(4):772-80 [PMID: 23329690]
  23. Nat Biotechnol. 2011 May 15;29(7):644-52 [PMID: 21572440]
  24. Bioinformatics. 2015 May 15;31(10):1674-6 [PMID: 25609793]
  25. Nucleic Acids Res. 2015 Jan;43(Database issue):D222-6 [PMID: 25414356]
  26. Nat Methods. 2022 Jun;19(6):679-682 [PMID: 35637307]
  27. Science. 2022 Feb 4;375(6580):497-498 [PMID: 35113690]
  28. J Virol. 2009 Jul;83(14):7142-50 [PMID: 19439473]
  29. Nature. 2018 Apr;556(7700):197-202 [PMID: 29618816]
  30. Nat Biotechnol. 2024 Feb;42(2):243-246 [PMID: 37156916]
  31. Nat Biotechnol. 2022 Jul;40(7):1023-1025 [PMID: 34980915]
  32. J Virol. 2007 Nov;81(22):12135-44 [PMID: 17804504]
  33. Proc Natl Acad Sci U S A. 2006 Mar 28;103(13):5108-13 [PMID: 16549795]
  34. Mol Biosyst. 2012 Jun;8(6):1661-77 [PMID: 22399070]
  35. Nature. 2021 Aug;596(7873):583-589 [PMID: 34265844]
  36. Nat Methods. 2021 Apr;18(4):366-368 [PMID: 33828273]
  37. Int J Mol Sci. 2020 Sep 16;21(18): [PMID: 32947863]
  38. Mol Cell Biochem. 1998 Jul;184(1-2):169-82 [PMID: 9746320]
  39. Viruses. 2022 Sep 07;14(9): [PMID: 36146784]
  40. Virus Evol. 2022 Dec 26;9(1):veac124 [PMID: 36694816]
  41. Nature. 2014 Jan 30;505(7485):686-90 [PMID: 24284629]
  42. Nat Rev Microbiol. 2022 Jun;20(6):321-334 [PMID: 34983966]
  43. BMC Bioinformatics. 2011 Aug 04;12:323 [PMID: 21816040]
  44. PLoS One. 2016 Mar 09;11(3):e0151092 [PMID: 26959231]
  45. Arch Virol. 2023 Jun 20;168(7):184 [PMID: 37338667]
  46. Virus Evol. 2022 Sep 01;8(2):veac082 [PMID: 36533143]
  47. Nat Methods. 2012 Mar 04;9(4):357-9 [PMID: 22388286]
  48. Viruses. 2021 Nov 26;13(12): [PMID: 34960636]
  49. Trends Microbiol. 2003 Dec;11(12):543-6 [PMID: 14659685]
  50. Genome Announc. 2016 Sep 08;4(5): [PMID: 27609921]
  51. Mol Biol Evol. 2020 May 1;37(5):1530-1534 [PMID: 32011700]
  52. Int Microbiol. 2021 Nov;24(4):559-571 [PMID: 34365574]
  53. J Comput Biol. 2012 May;19(5):455-77 [PMID: 22506599]
  54. J Virol. 2007 Mar;81(6):2930-9 [PMID: 17202214]
  55. Nature. 2016 Dec 22;540(7634):539-543 [PMID: 27880757]
  56. Nat Microbiol. 2020 Oct;5(10):1262-1270 [PMID: 32690954]
  57. BMC Bioinformatics. 2018 Aug 29;19(1):307 [PMID: 30157759]
  58. Front Microbiol. 2019 Oct 24;10:2351 [PMID: 31708880]
  59. PLoS Pathog. 2011 Sep;7(9):e1002215 [PMID: 21931546]
  60. Nucleic Acids Res. 2023 Jan 6;51(D1):D384-D388 [PMID: 36477806]
  61. Nat Commun. 2022 Nov 15;13(1):6968 [PMID: 36379955]
  62. Virol J. 2016 Jul 29;13:131 [PMID: 27473856]
  63. Science. 2022 Apr 8;376(6589):156-162 [PMID: 35389782]
  64. Science. 2013 Jul 19;341(6143):281-6 [PMID: 23869018]

Grants

  1. /Wellcome Trust
  2. 107653/Z/15/Z/Wellcome Trust (WT)
  3. GNT2017197/DHAC | National Health and Medical Research Council (NHMRC)
  4. MC_UU_00034/1/UKRI | Medical Research Council (MRC)

MeSH Term

Genome, Viral
Animals
Phylogeny
Genome Size
Viral Proteins
Exonucleases
RNA, Viral

Chemicals

Viral Proteins
Exonucleases
RNA, Viral

Word Cloud

Created with Highcharts 10.0.0virusgenomeRNAviruseserrorencodekbflavi-likesizesizeserror-correctinggenomesexonucleasedomainsmechanismknownpesti-likethresholdcommonlyheldfundamentalrelationshipratemanifestnotional"errorthreshold"setsupperlimitintrinsicallyhighmutationratesduelackmechanismscorrectionmustthereforesmallavoidaccumulatingexcessivenumberdeleteriousmutationswillultimatelyleadpopulationextinctionproposedexceptionsevolutionaryruleordercoronavirusesexonucleasesenablingreachlengthsgreater40recentdiscoverylarge-genomecomprise27lengthyetseeminglyledproposalproofreadingrequiredfacilitateexpansionnonsegmented30Hereindescribe~40identifiedspongemetatranscriptomeStructuralanalysisrevealedmayinsteadcapturedcellularassociatednucleicacidmetabolismpreviouslyfoundPhylogeneticinferenceplaceddivergentlineageprovisionallytermed"Maximus"representsinstanceachievingcomparabledemonstratesevolvedmultiplesolutionsovercome~40-kbFlaviviridaeevolutionmetatranscriptomicsvirology

Similar Articles

Cited By