Impacts of Deicer Salt on Water Quality Performance of Stormwater Bioretention Systems with Varied Vegetation and Hydrology.

Alexander H Brown, Margaret C Hoffman, Lauren Elyse McPhillips
Author Information
  1. Alexander H Brown: Department of Civil and Environmental Engineering, The Pennsylvania State University, 408 Sackett Building, University Park, Pennsylvania 16802, United States.
  2. Margaret C Hoffman: Department of Plant Science, The Pennsylvania State University, 306 Tyson Building, University Park, Pennsylvania 16802, United States.
  3. Lauren Elyse McPhillips: Department of Civil and Environmental Engineering, The Pennsylvania State University, 226B Sackett Building, University Park, Pennsylvania 16802, United States. ORCID

Abstract

Sodium chloride (NaCl) deicers contaminate bioretention and influence effluent water quality, the effects of which are not yet fully understood. We tested this by constructing 48 mesocosms in a greenhouse, each having , , or no vegetation; having an internal water storage (IWS) zone or not; and being exposed to high or low NaCl doses in the late winters of 2022 and 2023. Synthetic stormwater was applied and effluent was monitored through May 2023 with an end-of-experiment analysis of soil and plant biomass for Nitrogen, phosphorus, copper, zinc, and total suspended solids (TSS). Average effluent loads increased in spring, after NaCl application, for total phosphorus (+61%), copper (+61%), zinc (+88%), and TSS (+66%). These four analytes recovered by summer, with average annual percent removals >85%. Vegetation and IWS reduced annual phosphorus (by -33 and -70%, respectively) and copper (by -24 and -40%) loads, while higher NaCl concentrations increased annual phosphorus (+107%), copper (+22%), and TSS (+51%) loads. Nitrogen removal was not linked with NaCl but was dependent upon the presence of IWS or vegetation. Post-NaCl effluent spikes pose seasonal risks to aquatic ecosystems, emphasizing the need for active maintenance, redundant removal mechanisms, and minimized exposure to NaCl.

References

  1. Water Res. 2009 Oct;43(18):4590-8 [PMID: 19683781]
  2. Water Environ Res. 2020 Feb;92(2):236-244 [PMID: 31386767]
  3. Water Res. 2015 Oct 15;83:195-204 [PMID: 26150068]
  4. Environ Sci Technol. 2017 Apr 18;51(8):4165-4172 [PMID: 28324648]
  5. Water Res. 2004 Feb;38(3):720-32 [PMID: 14723942]
  6. Int J Phytoremediation. 2010 Jan;12(1):34-53 [PMID: 20734627]
  7. Water Environ Res. 2014 May;86(5):387-97 [PMID: 24961065]
  8. Water Sci Technol. 2014;69(6):1312-9 [PMID: 24647199]
  9. Front Environ Sci. 2023 Apr 4;11:1-20 [PMID: 37234950]
  10. Chemosphere. 2011 Nov;85(8):1318-24 [PMID: 21862104]
  11. Water Sci Technol. 2014;69(9):1961-9 [PMID: 24804674]
  12. J Environ Manage. 2019 May 1;237:424-432 [PMID: 30822646]
  13. Sci Total Environ. 2017 Feb 1;579:1588-1599 [PMID: 27919558]
  14. Sci Total Environ. 2021 Jul 15;778:146069 [PMID: 33714832]
  15. Chemosphere. 2007 Jan;66(9):1601-9 [PMID: 17005239]
  16. Sci Total Environ. 2020 Aug 10;729:138736 [PMID: 32361433]
  17. Water Environ Res. 2015 Sep;87(9):823-34 [PMID: 26182408]
  18. Water Res. 2022 May 1;214:118205 [PMID: 35220064]
  19. J Environ Qual. 2012 Nov-Dec;41(6):1951-9 [PMID: 23128752]
  20. J Environ Manage. 2016 Jan 15;166:267-75 [PMID: 26517275]
  21. Water Environ Res. 2013 Sep;85(9):823-32 [PMID: 24175412]
  22. Water Environ Res. 2001 Jan-Feb;73(1):5-14 [PMID: 11558302]
  23. Environ Sci Technol. 2006 Feb 15;40(4):1335-40 [PMID: 16572794]
  24. Environ Manage. 2015 Sep;56(3):630-42 [PMID: 25971737]
  25. Water Res. 2008 Feb;42(4-5):893-902 [PMID: 17915283]
  26. Water Sci Technol. 2014;69(11):2295-304 [PMID: 24901625]
  27. Freshw Sci. 2022 Sep 1;41(3):420-441 [PMID: 36213200]
  28. Sci Total Environ. 2020 Jul 1;724:138121 [PMID: 32247141]
  29. Water Res. 2016 Mar 1;90:141-155 [PMID: 26724448]
  30. Environ Sci Technol. 2014 Jan 21;48(2):977-84 [PMID: 24377325]

Word Cloud

Created with Highcharts 10.0.0NaCleffluentphosphoruscopperIWSTSSloadsannualwatervegetation2023zinctotalincreased+61%VegetationremovalSodiumchloridedeicerscontaminatebioretentioninfluencequalityeffectsyetfullyunderstoodtestedconstructing48mesocosmsgreenhouseinternalstoragezoneexposedhighlowdoseslatewinters2022SyntheticstormwaterappliedmonitoredMayend-of-experimentanalysissoilplantbiomassnitrogensuspendedsolidsAveragespringapplication+88%+66%fouranalytesrecoveredsummeraveragepercentremovals>85%reduced-33-70%respectively-24-40%higherconcentrations+107%+22%+51%NitrogenlinkeddependentuponpresencePost-NaClspikesposeseasonalrisksaquaticecosystemsemphasizingneedactivemaintenanceredundantmechanismsminimizedexposureImpactsDeicerSaltWaterQualityPerformanceStormwaterBioretentionSystemsVariedHydrology

Similar Articles

Cited By

No available data.