Integrating Clinical Data and Radiomics and Deep Learning Features for End-to-End Delayed Cerebral Ischemia Prediction on Noncontrast CT.

Qi-Qi Ban, Hao-Tian Zhang, Wei Wang, Yi-Fan Du, Yi Zhao, Ai-Jun Peng, Hang Qu
Author Information
  1. Qi-Qi Ban: From the Department of Radiology (Q.-q.B., W.W., Y.Z., H.Q.), Affiliated Hospital of Yangzhou University, Yangzhou, China. ORCID
  2. Hao-Tian Zhang: Department of Industrial and Systems Engineering (H.-t.Z.), The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region, China. ORCID
  3. Wei Wang: From the Department of Radiology (Q.-q.B., W.W., Y.Z., H.Q.), Affiliated Hospital of Yangzhou University, Yangzhou, China. ORCID
  4. Yi-Fan Du: College of Medical Imaging (Q.-q.B., Y.-f.D.), Dalian Medical University, Dalian, China. ORCID
  5. Yi Zhao: From the Department of Radiology (Q.-q.B., W.W., Y.Z., H.Q.), Affiliated Hospital of Yangzhou University, Yangzhou, China. ORCID
  6. Ai-Jun Peng: Department of Neurosurgery (A.-j.P.), Affiliated Hospital of Yangzhou University, Yangzhou, China. ORCID
  7. Hang Qu: From the Department of Radiology (Q.-q.B., W.W., Y.Z., H.Q.), Affiliated Hospital of Yangzhou University, Yangzhou, China hangqu@foxmail.com. ORCID

Abstract

BACKGROUND AND PURPOSE: Delayed cerebral ischemia is hard to diagnose early due to gradual, symptomless development. This study aimed to develop an automated model for predicting delayed cerebral ischemia following aneurysmal SAH on NCCT.
MATERIALS AND METHODS: This retrospective study included 400 patients with aneurysmal SAH (156 with delayed cerebral ischemia) who underwent NCCT. The study used ATT-Deeplabv3+ for automatically segmenting hemorrhagic regions using semisupervised learning. Principal component analysis was used for reducing the dimensionality of deep learning features extracted from the average pooling layer of ATT-DeepLabv3+. The classification model integrated clinical data, radiomics, and deep learning features to predict delayed cerebral ischemia. Feature selection involved Pearson correlation coefficients, least absolute shrinkage, and selection operator regression. We developed models based on clinical features, clinical-radiomics, and a combination of clinical, radiomics, and deep learning. The study selected logistic regression, Naive Bayes, Adaptive Boosting (AdaBoost), and multilayer perceptron as classifiers. The performance of segmentation and classification models was evaluated on their testing sets using the Dice similarity coefficient for segmentation, and the area under the receiver operating characteristic curve (AUC) and calibration curves for classification.
RESULTS: The segmentation process achieved a Dice similarity coefficient of 0.91 and the average time of 0.037 s/image. Seventeen features were selected to calculate the radiomics score. The clinical-radiomics-deep learning model with multilayer perceptron achieved the highest AUC of 0.84 (95% CI, 0.72-0.97), which outperformed the clinical-radiomics model (=���.002) and the clinical features model (=���.001) with multilayer perceptron. The performance of clinical-radiomics-deep learning model using AdaBoost was significantly superior to its clinical-radiomics model (=���.027). The performance of the clinical-radiomics-deep learning model and the clinical-radiomics model with logistic regression notably exceeded that of the model based solely on clinical features (=���.028; =���.046). The AUC of the clinical-radiomics-deep learning model with multilayer perceptron (<���.001) and the clinical-radiomics model with logistic regression (=���.046) were significantly higher than the clinical model with logistic regression. Of all models, the clinical-radiomics-deep learning model with multilayer perceptron showed best calibration.
CONCLUSIONS: The proposed 2-stage end-to-end model not only achieves rapid and accurate segmentation but also demonstrates superior diagnostic performance with high AUC values and good calibration in the clinical-radiomics-deep learning model, suggesting its potential to enhance delayed cerebral ischemia detection and treatment strategies.

References

  1. Front Aging Neurosci. 2022 Jun 17;14:857521 [PMID: 35783143]
  2. Radiology. 2016 Feb;278(2):563-77 [PMID: 26579733]
  3. J Cereb Blood Flow Metab. 2011 Jun;31(6):1443-51 [PMID: 21285966]
  4. Heart Lung Circ. 2021 Apr;30(4):525-530 [PMID: 32896483]
  5. Neurosurgery. 2021 Apr 15;88(5):E427-E434 [PMID: 33548918]
  6. Stroke. 2021 Apr;52(4):1370-1379 [PMID: 33596676]
  7. Comput Methods Programs Biomed. 2022 Mar;215:106599 [PMID: 34974233]
  8. AJNR Am J Neuroradiol. 2018 Jun;39(6):1059-1064 [PMID: 29650786]
  9. World Neurosurg. 2019 Oct;130:e613-e619 [PMID: 31260850]
  10. Radiol Med. 2021 Oct;126(10):1296-1311 [PMID: 34213702]
  11. J Neurointerv Surg. 2017 Nov;9(11):1118-1124 [PMID: 29030464]
  12. Nat Rev Clin Oncol. 2023 Feb;20(2):69-82 [PMID: 36443594]
  13. Stroke. 2010 Oct;41(10):2391-5 [PMID: 20798370]
  14. Stroke. 2013 May;44(5):1288-94 [PMID: 23512975]
  15. Hypertens Res. 2010 May;33(5):398-410 [PMID: 20379189]
  16. Cancer Imaging. 2023 Aug 3;23(1):74 [PMID: 37537659]
  17. Neural Comput Appl. 2023;35(21):15343-15364 [PMID: 37273912]
  18. Acad Radiol. 2004 Feb;11(2):178-89 [PMID: 14974593]
  19. AJNR Am J Neuroradiol. 2014 Dec;35(12):2279-86 [PMID: 25104292]
  20. Neurocrit Care. 2023 Oct;39(2):311-319 [PMID: 37537496]
  21. Bioengineering (Basel). 2023 Aug 16;10(8): [PMID: 37627852]
  22. J Neurointerv Surg. 2019 May;11(5):497-502 [PMID: 30415227]
  23. Stroke. 2020 Feb;51(2):424-430 [PMID: 31805846]
  24. Neurocrit Care. 2008;8(3):404-12 [PMID: 18196475]
  25. Stroke. 2017 Nov;48(11):2958-2963 [PMID: 28974630]
  26. Neuroradiology. 2019 Mar;61(3):247-256 [PMID: 30693409]
  27. Eur Radiol. 2023 Sep;33(9):6548-6556 [PMID: 37338554]
  28. Transl Stroke Res. 2021 Jun;12(3):428-446 [PMID: 33078345]
  29. J Neurosurg. 2002 Aug;97(2):401-7 [PMID: 12186469]
  30. Stroke. 2013 Jan;44(1):43-54 [PMID: 23250997]
  31. AJNR Am J Neuroradiol. 2016 Sep;37(9):1588-93 [PMID: 27102313]
  32. J Neurosurg. 2008 Dec;109(6):1052-9 [PMID: 19035719]
  33. Neurology. 2021 Jan 26;96(4):e553-e562 [PMID: 33184232]
  34. Neurology. 2022 Feb 1;98(5):e459-e469 [PMID: 34845057]
  35. Neurocrit Care. 2014 Dec;21(3):444-50 [PMID: 24715326]
  36. World Neurosurg. 2023 Feb;170:e214-e222 [PMID: 36323345]
  37. Med Image Anal. 2022 Jul;79:102444 [PMID: 35472844]
  38. Front Oncol. 2024 Feb 27;14:1289265 [PMID: 38476364]
  39. Eur Radiol. 2023 Oct;33(10):6759-6770 [PMID: 37099175]

MeSH Term

Humans
Deep Learning
Male
Female
Brain Ischemia
Retrospective Studies
Middle Aged
Tomography, X-Ray Computed
Aged
Adult
Predictive Value of Tests
Radiomics

Word Cloud

Created with Highcharts 10.0.0modellearningfeaturesclinicalclinical-radiomics-deep=���cerebralischemiaregressionclinical-radiomicsmultilayerperceptronstudydelayedlogisticperformancesegmentationAUC0usingdeepclassificationradiomicsmodelscalibrationANDDelayedaneurysmalSAHNCCTusedaverageselectionbasedselectedAdaBoostDicesimilaritycoefficientachieved001significantlysuperior046BACKGROUNDPURPOSE:harddiagnoseearlyduegradualsymptomlessdevelopmentaimeddevelopautomatedpredictingfollowingMATERIALSMETHODS:retrospectiveincluded400patients156underwentATT-Deeplabv3+automaticallysegmentinghemorrhagicregionssemisupervisedPrincipalcomponentanalysisreducingdimensionalityextractedpoolinglayerATT-DeepLabv3+integrateddatapredictFeatureinvolvedPearsoncorrelationcoefficientsleastabsoluteshrinkageoperatordevelopedcombinationNaiveBayesAdaptiveBoostingclassifiersevaluatedtestingsetsareareceiveroperatingcharacteristiccurvecurvesRESULTS:process91time037s/imageSeventeencalculatescorehighest8495%CI72-097outperformed002027notablyexceededsolely028<���highershowedbestCONCLUSIONS:proposed2-stageend-to-endachievesrapidaccuratealsodemonstratesdiagnostichighvaluesgoodsuggestingpotentialenhancedetectiontreatmentstrategiesIntegratingClinicalDataRadiomicsDeepLearningFeaturesEnd-to-EndCerebralIschemiaPredictionNoncontrastCT

Similar Articles

Cited By