An energy coupling factor transporter of impacts antibiotic susceptibility as well as metal and membrane homeostasis.

Marta Rudzite, G A O'Toole
Author Information
  1. Marta Rudzite: Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA.
  2. G A O'Toole: Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA. ORCID

Abstract

is a prevalent member of human microbiome capable of acting as a causative agent of oral and respiratory infections. competitive success within the infection niche is dependent on acquisition of metal ions and vitamins. Among the systems that bacteria use for micronutrient uptake is the energy coupling factor (ECF) transporter system EcfAAT. Here we describe physiological changes arising from EcfAAT transporter disruption. We found that EcfAAT contributes to antibiotic sensitivity as well as metal and membrane homeostasis. Specifically, our work found that disruption of EcfAAT results in increased polymyxin susceptibility. We performed assessment of cell-associated metal content and found depletion of iron, magnesium, and manganese. Furthermore, membrane composition analysis revealed significant enrichment in unsaturated fatty acid species resulting in increased membrane fluidity. Our results demonstrate how disruption of a single EcfAAT transporter can have broad consequences on bacterial cell homeostasis. ECF transporters are of interest within the context of infection biology in bacterial species other than streptococci, hence work described here will further the understanding of how micronutrient uptake systems contribute to bacterial pathogenesis.

Keywords

References

  1. Proc Natl Acad Sci U S A. 2012 May 8;109(19):7314-9 [PMID: 22529342]
  2. J Chem Inf Model. 2017 Sep 25;57(9):2181-2193 [PMID: 28805387]
  3. Elife. 2020 Jun 09;9: [PMID: 32515736]
  4. Antimicrob Agents Chemother. 1975 May;7(5):596-600 [PMID: 167658]
  5. Int J Mol Sci. 2022 Feb 27;23(5): [PMID: 35269783]
  6. Vet Res. 2021 Mar 4;52(1):39 [PMID: 33663613]
  7. Biomed Res Int. 2015;2015:679109 [PMID: 25664322]
  8. Sci Rep. 2011;1:125 [PMID: 22355642]
  9. J Bacteriol. 2020 Jun 25;202(14): [PMID: 32393520]
  10. J Biol Chem. 2014 Feb 28;289(9):6273-87 [PMID: 24381171]
  11. Membranes (Basel). 2020 Aug 08;10(8): [PMID: 32784516]
  12. Annu Rev Biochem. 2019 Jun 20;88:551-576 [PMID: 30485755]
  13. Environ Health Perspect. 2009 Nov;117(11):1718-23 [PMID: 20049123]
  14. Electrophoresis. 2010 May;31(9):1590-6 [PMID: 20422634]
  15. J Antimicrob Chemother. 2007 Dec;60(6):1206-15 [PMID: 17878146]
  16. J Med Chem. 2010 Mar 11;53(5):1898-916 [PMID: 19874036]
  17. Sci Transl Med. 2020 Nov 18;12(570): [PMID: 33208501]
  18. Commun Biol. 2023 Nov 20;6(1):1182 [PMID: 37985798]
  19. Front Microbiol. 2017 Aug 03;8:1437 [PMID: 28824570]
  20. Antimicrob Agents Chemother. 1986 Mar;29(3):496-500 [PMID: 3013085]
  21. J Bacteriol. 2019 May 8;201(11): [PMID: 30885933]
  22. Clin Microbiol Rev. 2008 Jul;21(3):449-65 [PMID: 18625681]
  23. Future Microbiol. 2018 Jun 1;13:915-932 [PMID: 29882414]
  24. J Bacteriol. 2020 Jan 2;202(2): [PMID: 31685535]
  25. Immunochemistry. 1976 Oct;13(10):813-8 [PMID: 187544]
  26. Infect Immun. 2005 Sep;73(9):6064-74 [PMID: 16113327]
  27. FEMS Microbiol Rev. 2011 Jan;35(1):3-67 [PMID: 20497229]
  28. Front Microbiol. 2020 Jan 31;11:10 [PMID: 32082276]
  29. Nat Commun. 2022 Oct 21;13(1):6195 [PMID: 36271003]
  30. J Bacteriol. 2005 Nov;187(21):7193-203 [PMID: 16237003]
  31. J Infect Dis. 1971 Dec;124(6):610-2 [PMID: 4331350]
  32. Chem Commun (Camb). 2024 Jan 18;60(7):870-873 [PMID: 38164786]
  33. J Fluoresc. 1995 Mar;5(1):59-69 [PMID: 24226612]
  34. J Med Chem. 1999 Nov 4;42(22):4604-13 [PMID: 10579822]
  35. J Bacteriol. 2019 Oct 21;201(22): [PMID: 31501281]
  36. Mol Plant Microbe Interact. 2007 Nov;20(11):1421-30 [PMID: 17977153]
  37. Microbiology (Reading). 2022 Feb;168(2): [PMID: 35118938]
  38. mBio. 2015 Mar 24;6(2): [PMID: 25805729]
  39. J Biosci. 2021;46: [PMID: 34475315]
  40. Microbiol Mol Biol Rev. 2003 Dec;67(4):593-656 [PMID: 14665678]
  41. Proc Natl Acad Sci U S A. 2020 Feb 11;117(6):3167-3173 [PMID: 31980538]
  42. Cold Spring Harb Perspect Med. 2016 Oct 3;6(10): [PMID: 27503996]
  43. FEBS J. 2022 Jun;289(12):3550-3567 [PMID: 35038363]
  44. Int J Med Microbiol. 2010 Dec;300(8):549-56 [PMID: 20951638]
  45. Annu Rev Microbiol. 2013;67:313-36 [PMID: 24024634]
  46. Biometals. 2014 Dec;27(6):1361-70 [PMID: 25315444]
  47. J Phys Chem B. 2023 Apr 20;127(15):3382-3391 [PMID: 37021971]
  48. J Bacteriol. 2009 Jan;191(1):42-51 [PMID: 18931129]
  49. mSphere. 2024 Jun 25;9(6):e0011524 [PMID: 38752757]
  50. Annu Rev Microbiol. 2014;68:81-100 [PMID: 24819367]
  51. ACS Omega. 2018 Dec 31;3(12):17828-17834 [PMID: 30613815]
  52. Antimicrob Agents Chemother. 2005 Aug;49(8):3114-21 [PMID: 16048912]
  53. J Gen Microbiol. 1983 Feb;129(2):509-17 [PMID: 6302204]
  54. J Clin Invest. 2002 Feb;109(3):317-25 [PMID: 11827991]
  55. Nat Commun. 2022 Nov 30;13(1):6557 [PMID: 36450721]
  56. Pharmaceutics. 2021 Dec 21;14(1): [PMID: 35056900]
  57. Proc Natl Acad Sci U S A. 2015 Mar 31;112(13):4110-5 [PMID: 25775563]
  58. J Bacteriol. 2014 Jul;196(14):2563-77 [PMID: 24794568]
  59. Mol Microbiol. 2021 Apr;115(4):658-671 [PMID: 33084151]
  60. mSystems. 2023 Dec 21;8(6):e0073323 [PMID: 37905937]
  61. Res Microbiol. 2019 Nov - Dec;170(8):358-365 [PMID: 31283960]
  62. MethodsX. 2021 Oct 11;8:101543 [PMID: 34754811]
  63. Appl Microbiol Biotechnol. 2020 May;104(9):3771-3780 [PMID: 32157424]
  64. Biochemistry. 1977 Apr 19;16(8):1642-8 [PMID: 192271]
  65. J Antimicrob Chemother. 2018 Dec 1;73(12):3385-3390 [PMID: 30215733]
  66. Front Microbiol. 2018 Aug 14;9:1863 [PMID: 30154773]
  67. J Microbiol Methods. 2001 Jan;43(3):153-64 [PMID: 11118650]
  68. J Bacteriol. 2024 Jul 25;206(7):e0017624 [PMID: 38940597]
  69. Bio Protoc. 2018 Oct 20;8(20):e3063 [PMID: 34532528]
  70. J Med Chem. 2022 Jul 14;65(13):8869-8880 [PMID: 35709475]

Grants

  1. P30 CA023108/NCI NIH HHS
  2. R01 AI155424/NIAID NIH HHS

Word Cloud

Created with Highcharts 10.0.0metaltransporterEcfAATmembraneuptakeenergycouplingfactorECFdisruptionfoundantibiotichomeostasissusceptibilitybacterialwithininfectionsystemsmicronutrientwellworkresultsincreasedcompositionspeciesprevalentmemberhumanmicrobiomecapableactingcausativeagentoralrespiratoryinfectionscompetitivesuccessnichedependentacquisitionionsvitaminsAmongbacteriausesystemdescribephysiologicalchangesarisingcontributessensitivitySpecificallypolymyxinperformedassessmentcell-associatedcontentdepletionironmagnesiummanganeseFurthermoreanalysisrevealedsignificantenrichmentunsaturatedfattyacidresultingfluiditydemonstratesinglecanbroadconsequencescelltransportersinterestcontextbiologystreptococcihencedescribedwillunderstandingcontributepathogenesisimpactsStreptococcus

Similar Articles

Cited By