Biomolecular condensates can function as inherent catalysts.

Xiao Guo, Mina Farag, Naixin Qian, Xia Yu, Anton Ni, Yuefeng Ma, Wen Yu, Matthew R King, Vicky Liu, Joonho Lee, Richard N Zare, Wei Min, Rohit V Pappu, Yifan Dai
Author Information
  1. Xiao Guo: Department of Biomedical Engineering, Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO 63130.
  2. Mina Farag: Department of Biomedical Engineering, Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO 63130.
  3. Naixin Qian: Department of Chemistry, Columbia University, New York, NY 10027.
  4. Xia Yu: Department of Chemistry, Stanford University, Stanford, CA 94305.
  5. Anton Ni: Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138.
  6. Yuefeng Ma: Department of Biomedical Engineering, Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO 63130.
  7. Wen Yu: Department of Biomedical Engineering, Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO 63130.
  8. Matthew R King: Department of Biomedical Engineering, Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO 63130.
  9. Vicky Liu: Department of Biomedical Engineering, Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO 63130.
  10. Joonho Lee: Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138.
  11. Richard N Zare: Department of Chemistry, Stanford University, Stanford, CA 94305.
  12. Wei Min: Department of Chemistry, Columbia University, New York, NY 10027.
  13. Rohit V Pappu: Department of Biomedical Engineering, Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO 63130.
  14. Yifan Dai: Department of Biomedical Engineering, Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO 63130.

Abstract

We report the discovery that chemical reactions such as ATP hydrolysis can be catalyzed by condensates formed by intrinsically disordered proteins (IDPs), which themselves lack any intrinsic ability to function as enzymes. This inherent catalytic feature of condensates derives from the electrochemical environments and the electric fields at interfaces that are direct consequences of phase separation. The condensates we studied were capable of catalyzing diverse hydrolysis reactions, including hydrolysis and radical-dependent breakdown of ATP whereby ATP fully decomposes to adenine and multiple carbohydrates. This distinguishes condensates from naturally occurring ATPases, which can only catalyze the dephosphorylation of ATP. Interphase and interfacial properties of condensates can be tuned via sequence design, thus enabling control over catalysis through sequence-dependent electrochemical features of condensates. Incorporation of hydrolase-like synthetic condensates into live cells enables activation of transcriptional circuits that depend on products of hydrolysis reactions. Inherent catalytic functions of condensates, which are emergent consequences of phase separation, are likely to affect metabolic regulation in cells.

References

  1. Proteins. 2010 Apr;78(5):1120-36 [PMID: 19927322]
  2. Org Lett. 2005 May 26;7(11):2093-5 [PMID: 15901142]
  3. Nat Chem Biol. 2024 Apr;20(4):443-451 [PMID: 37973891]
  4. Microb Cell Fact. 2021 Aug 26;20(1):169 [PMID: 34446023]
  5. Proc Natl Acad Sci U S A. 2021 Mar 9;118(10): [PMID: 33653957]
  6. Nat Commun. 2019 Oct 18;10(1):4764 [PMID: 31628307]
  7. Proc Natl Acad Sci U S A. 2019 Sep 24;116(39):19294-19298 [PMID: 31451646]
  8. J Chem Phys. 2020 May 7;152(17):174201 [PMID: 32384848]
  9. Nature. 2012 Mar 07;483(7389):336-40 [PMID: 22398450]
  10. Genes Dev. 2023 May 1;37(9-10):354-376 [PMID: 37137715]
  11. J Mol Biol. 1988 Sep 5;203(1):85-95 [PMID: 3054125]
  12. Nat Chem. 2022 Feb;14(2):196-207 [PMID: 34931046]
  13. Chem. 2023 Jun 8;9(6):1594-1609 [PMID: 37546704]
  14. Philos Trans R Soc Lond B Biol Sci. 2004 Aug 29;359(1448):1249-66; discussion 1266-7 [PMID: 15306380]
  15. Nat Chem. 2016 Nov 22;8(12):1091-1098 [PMID: 27874869]
  16. Mol Cell. 2015 Mar 5;57(5):936-947 [PMID: 25747659]
  17. Trends Biochem Sci. 1992 Mar;17(3):105-10 [PMID: 1412693]
  18. J Phys Chem A. 2008 Jun 5;112(22):4885-94 [PMID: 18473449]
  19. Science. 1997 Feb 7;275(5301):814-7 [PMID: 9012344]
  20. Nat Rev Mol Cell Biol. 2021 Mar;22(3):183-195 [PMID: 32632317]
  21. Nat Cell Biol. 2024 Mar;26(3):346-352 [PMID: 38424273]
  22. Proc Natl Acad Sci U S A. 2013 Jul 9;110(28):11226-31 [PMID: 23798434]
  23. Cell. 2016 Apr 21;165(3):620-30 [PMID: 27104979]
  24. Nat Chem. 2011 Nov 27;4(2):118-23 [PMID: 22270627]
  25. Nat Struct Mol Biol. 2016 Dec 6;23(12):1030-1034 [PMID: 27922613]
  26. Mol Syst Biol. 2006;2:2006.0028 [PMID: 16738572]
  27. J Phys Chem B. 2016 May 5;120(17):4034-46 [PMID: 27090068]
  28. Nat Rev Mol Cell Biol. 2017 May;18(5):285-298 [PMID: 28225081]
  29. PLoS Comput Biol. 2019 Oct 21;15(10):e1007028 [PMID: 31634364]
  30. ACS Synth Biol. 2016 Nov 18;5(11):1231-1238 [PMID: 27452868]
  31. Nature. 2023 Nov;623(7988):842-852 [PMID: 37853127]
  32. Science. 2020 Feb 7;367(6478):694-699 [PMID: 32029630]
  33. Nano Lett. 2022 Jan 26;22(2):612-621 [PMID: 35001622]
  34. Proc Natl Acad Sci U S A. 2005 Feb 22;102(8):2862-7 [PMID: 15703297]
  35. Cell. 2016 Jul 28;166(3):651-663 [PMID: 27374333]
  36. PLoS One. 2012;7(10):e47314 [PMID: 23071782]
  37. ChemistryOpen. 2020 Jun 08;9(6):691-694 [PMID: 32528791]
  38. J Bacteriol. 1997 Oct;179(20):6302-10 [PMID: 9335276]
  39. J Microbiol Biotechnol. 2007 Feb;17(2):244-52 [PMID: 18051755]
  40. Nat Chem. 2020 Sep;12(9):814-825 [PMID: 32747754]
  41. Acc Chem Res. 2016 Aug 16;49(8):1494-502 [PMID: 27486796]
  42. Nat Chem Biol. 2023 Apr;19(4):518-528 [PMID: 36747054]
  43. Science. 2017 Sep 22;357(6357): [PMID: 28935776]
  44. Biophys Rev (Melville). 2021 Jun;2(2):021302 [PMID: 34179888]
  45. J Am Chem Soc. 2017 Feb 15;139(6):2369-2378 [PMID: 28103437]
  46. FEBS Lett. 1988 May 9;232(1):73-7 [PMID: 2896608]
  47. Nature. 1997 Jul 24;388(6640):390-3 [PMID: 9237758]
  48. Science. 2008 Dec 19;322(5909):1857-61 [PMID: 19095943]
  49. Chem Rev. 2023 Jul 26;123(14):8945-8987 [PMID: 36881934]
  50. Sci Adv. 2021 Jul 30;7(31): [PMID: 34330707]
  51. Toxicol Sci. 2016 Dec;154(2):320-331 [PMID: 27621282]
  52. Nano Lett. 2023 Dec 13;23(23):10796-10801 [PMID: 37862690]
  53. Annu Rev Biochem. 2017 Jun 20;86:387-415 [PMID: 28375745]
  54. Nat Chem Biol. 2024 Mar;20(3):291-301 [PMID: 37770698]
  55. APL Mater. 2021 Feb;9(2): [PMID: 38362050]
  56. Cell. 2018 Jul 26;174(3):688-699.e16 [PMID: 29961577]
  57. Nat Photonics. 2019 Jun;13(6):412-417 [PMID: 32607124]
  58. J Cell Biochem. 1993 Jan;51(1):47-54 [PMID: 8432742]
  59. Nat Mater. 2015 Nov;14(11):1164-71 [PMID: 26390327]
  60. Curr Protoc Protein Sci. 2010 Aug;Chapter 6:6.11.1-6.11.16 [PMID: 20814933]
  61. Elife. 2017 Nov 01;6: [PMID: 29091028]
  62. Nucleus. 2024 Dec;15(1):2319957 [PMID: 38443761]
  63. Chem Rev. 1947 Dec;41(3):441-501 [PMID: 18895519]
  64. Phys Chem Chem Phys. 2009 May 28;11(20):3822-30 [PMID: 19440608]
  65. J Am Chem Soc. 2024 Oct 2;: [PMID: 39356108]
  66. Nat Rev Mol Cell Biol. 2021 Mar;22(3):196-213 [PMID: 33510441]
  67. J Am Chem Soc. 2019 Jul 10;141(27):10585-10589 [PMID: 31244167]
  68. J Chem Phys. 2021 Aug 28;155(8):084801 [PMID: 34470363]
  69. Nat Chem Biol. 2022 Dec;18(12):1298-1306 [PMID: 35761089]
  70. Nat Commun. 2020 Nov 23;11(1):5949 [PMID: 33230101]
  71. Nat Rev Mol Cell Biol. 2021 Mar;22(3):215-235 [PMID: 33169001]
  72. Nat Chem. 2016 Jun;8(6):569-75 [PMID: 27219701]
  73. Radiat Res. 1971 Jun;46(3):444-56 [PMID: 5087753]
  74. Chem Rev. 2006 Aug;106(8):3210-35 [PMID: 16895325]
  75. Trends Biotechnol. 2016 Aug;34(8):652-664 [PMID: 26996613]
  76. Nat Chem. 2021 Nov;13(11):1046-1054 [PMID: 34645986]
  77. Appl Environ Microbiol. 2001 Jan;67(1):162-71 [PMID: 11133441]
  78. J Chem Phys. 2018 Oct 28;149(16):163303 [PMID: 30384721]
  79. Sci Adv. 2019 Oct 18;5(10):eaax5177 [PMID: 31667345]
  80. J Neurosci Methods. 2000 Oct 15;102(1):11-23 [PMID: 11000407]
  81. J Chem Phys. 2022 May 21;156(19):194903 [PMID: 35597632]
  82. J Phys Chem Lett. 2020 Sep 3;11(17):7423-7428 [PMID: 32804510]
  83. Macromolecules. 2021 Jul 27;54(14):6878-6890 [PMID: 34334816]
  84. Nat Rev Bioeng. 2023 Apr 17;:1-15 [PMID: 37359769]
  85. J Am Chem Soc. 2022 May 4;144(17):7606-7609 [PMID: 35451822]
  86. Science. 1923 Jul 6;58(1488):13 [PMID: 17757135]
  87. J Am Chem Soc. 2018 Oct 17;140(41):13350-13359 [PMID: 30232877]
  88. J Bacteriol. 2001 Mar;183(6):1835-42 [PMID: 11222580]
  89. Cell. 2024 Apr 11;187(8):1889-1906.e24 [PMID: 38503281]
  90. Nat Commun. 2022 Dec 13;13(1):7722 [PMID: 36513655]
  91. Mol Cell. 2022 Jun 16;82(12):2201-2214 [PMID: 35675815]
  92. J Mol Biol. 2018 Nov 2;430(23):4619-4635 [PMID: 29949750]
  93. Acc Chem Res. 2015 Apr 21;48(4):998-1006 [PMID: 25799082]
  94. Nature. 1998 May 14;393(6681):185-7 [PMID: 9603524]
  95. Nat Rev Mol Cell Biol. 2004 Apr;5(4):282-95 [PMID: 15071553]
  96. Nat Commun. 2023 Sep 8;14(1):5527 [PMID: 37684240]
  97. Science. 2020 Jun 19;368(6497):1386-1392 [PMID: 32554597]
  98. Biophys J. 2018 Jul 3;115(1):3-8 [PMID: 29972809]
  99. Nat Cell Biol. 2017 Dec;19(12):1433-1440 [PMID: 29084198]
  100. Proc Natl Acad Sci U S A. 2007 Feb 20;104(8):2585-90 [PMID: 17307876]
  101. Cell. 2020 Apr 16;181(2):325-345.e28 [PMID: 32302571]
  102. Nat Rev Mol Cell Biol. 2015 Jan;16(1):18-29 [PMID: 25531225]
  103. Nat Rev Mol Cell Biol. 2024 Mar;25(3):187-211 [PMID: 37957331]
  104. Nat Rev Genet. 2010 May;11(5):367-79 [PMID: 20395970]
  105. Nat Rev Mol Cell Biol. 2011 Jan;12(1):60-70 [PMID: 21179061]
  106. Nat Commun. 2022 Oct 6;13(1):5880 [PMID: 36202843]
  107. ACS Synth Biol. 2023 Mar 17;12(3):877-891 [PMID: 36821745]

Grants

  1. F32 GM146418/NIGMS NIH HHS
  2. R35 GM149256/NIGMS NIH HHS

Word Cloud

Created with Highcharts 10.0.0condensatesATPhydrolysiscanreactionsfunctioninherentcatalyticelectrochemicalconsequencesphaseseparationcellsreportdiscoverychemicalcatalyzedformedintrinsicallydisorderedproteinsIDPslackintrinsicabilityenzymesfeaturederivesenvironmentselectricfieldsinterfacesdirectstudiedcapablecatalyzingdiverseincludingradical-dependentbreakdownwherebyfullydecomposesadeninemultiplecarbohydratesdistinguishesnaturallyoccurringATPasescatalyzedephosphorylationInterphaseinterfacialpropertiestunedviasequencedesignthusenablingcontrolcatalysissequence-dependentfeaturesIncorporationhydrolase-likesyntheticliveenablesactivationtranscriptionalcircuitsdependproductsInherentfunctionsemergentlikelyaffectmetabolicregulationBiomolecularcatalysts

Similar Articles

Cited By