Effects of multi-walled carbon nanotubes on message and Micro-RNA in human lung BEAS-2B cells.

Sheau-Fung Thai, Carlton P Jones, Brian L Robinette, Garret B Nelson, Alan Tennant, Hongzu Ren, Beena Vallanat, Anna Fisher, Jeffery A Ross, Kirk T Kitchin
Author Information
  1. Sheau-Fung Thai: Center for Computational Toxicology and Exposure, US Environmental Protection Agency, 109 TW Alexander Dr., Durham NC 27709, USA.
  2. Carlton P Jones: Center for Computational Toxicology and Exposure, US Environmental Protection Agency, 109 TW Alexander Dr., Durham NC 27709, USA.
  3. Brian L Robinette: Center for Computational Toxicology and Exposure, US Environmental Protection Agency, 109 TW Alexander Dr., Durham NC 27709, USA.
  4. Garret B Nelson: Center for Computational Toxicology and Exposure, US Environmental Protection Agency, 109 TW Alexander Dr., Durham NC 27709, USA.
  5. Alan Tennant: Center for Computational Toxicology and Exposure, US Environmental Protection Agency, 109 TW Alexander Dr., Durham NC 27709, USA.
  6. Beena Vallanat: Center for Computational Toxicology and Exposure, US Environmental Protection Agency, 109 TW Alexander Dr., Durham NC 27709, USA.

Abstract

Multi-walled Carbon nanotubes (MWCNTs) lack sufficient quality cytotoxicity, toxicity, genotoxicity and genomic data on which to make environmental and regulatory decisions. Therefore, we did a multidisciplinary study of 3 MWCNTs in human lung cells (BEAS-2B) with the following endpoints: cytotoxicity, DNA damage, reactive oxygen and nitrogen species, lipid peroxidation and mRNA and microRNA expression analyses. The MWCNTs were either unfunctionalized or functionalized with either -OH or -COOH. Doses studied ranged from 0.3 to 100 ug/ml and were exposed to a human lung cell line for 72 h., with genomic studies being done from 30 ug/ml downward. Some of the genomic pathways that were altered by MWCNT exposure were NRF2 mediated oxidative stress response, DNA damage repair, nuclear excision repair, base excision repair, mitochondrial dysfunction, oxidative phosphorylation, HIF1�� signaling, unfolded protein response, protein ubiquitination, ferroptosis and sirtuin signaling pathways. The data suggested that OH functionalized MWCNT caused more and larger gene/microRNA changes, followed by COOH functionalized MWCNT and unfunctionalized MWCNT being the least biologically active. From microRNA target filter analysis, there were altered signaling hubs. MYC is the only hub that altered by all 3 MWCNTs. Signaling hubs that are common to OH and COOH functionalized MWCNTs are GRB2, AR, TP63 and AGO2. The signaling hubs that were only present in OH functionalized MWCNTs are TP53, STAT3 and BRCA1. These signaling pathways and hubs we found correlated well with the published in vivo pathological effects like oxidative stress DNA damage, inflammation and cancer in MWCNTs treated mice.

Keywords

References

  1. Nanotoxicology. 2021 Jun;15(5):661-672 [PMID: 33899660]
  2. J Biochem Mol Toxicol. 2016 Jul;30(7):331-41 [PMID: 26918567]
  3. Neurotoxicology. 2012 Oct;33(5):1128-34 [PMID: 22728153]
  4. J Invest Dermatol. 2010 May;130(5):1249-57 [PMID: 20090763]
  5. Cancer Sci. 2012 Aug;103(8):1440-4 [PMID: 22537085]
  6. Cell Mol Immunol. 2016 Sep;13(5):560-76 [PMID: 27524111]
  7. J Cell Mol Med. 2021 Feb;25(3):1359-1370 [PMID: 33398919]
  8. Curr Allergy Asthma Rep. 2017 Mar;17(3):19 [PMID: 28332107]
  9. Genomics Proteomics Bioinformatics. 2009 Dec;7(4):147-54 [PMID: 20172487]
  10. PLoS One. 2012;7(9):e45761 [PMID: 23029228]
  11. Cell. 2012 May 25;149(5):1060-72 [PMID: 22632970]
  12. Toxicology. 2010 Mar 10;269(2-3):136-47 [PMID: 19857541]
  13. Proc Natl Acad Sci U S A. 2021 May 18;118(20): [PMID: 33972443]
  14. J Nanosci Nanotechnol. 2021 Nov 1;21(11):5414-5428 [PMID: 33980351]
  15. Genes (Basel). 2019 Mar 22;10(3): [PMID: 30909496]
  16. Cell. 1997 Feb 7;88(3):323-31 [PMID: 9039259]
  17. Oncogene. 2000 May 15;19(21):2548-56 [PMID: 10851053]
  18. JAKSTAT. 2015 Jan 20;3(4):e999503 [PMID: 26413424]
  19. Dose Response. 2012;10(3):344-54 [PMID: 22942868]
  20. Nat Nanotechnol. 2008 Jul;3(7):423-8 [PMID: 18654567]
  21. Expert Opin Ther Targets. 2008 Aug;12(8):1021-33 [PMID: 18620523]
  22. Genome Biol. 2014;15(12):550 [PMID: 25516281]
  23. Nucleic Acids Res. 2012 Jan;40(1):37-52 [PMID: 21911355]
  24. Nucleic Acids Res. 1991 Nov 11;19(21):6053 [PMID: 1945891]
  25. EMBO Rep. 2005 Apr;6(4):321-6 [PMID: 15809659]
  26. J Nanosci Nanotechnol. 2021 Oct 1;21(10):5083-5098 [PMID: 33875094]
  27. J Nanosci Nanotechnol. 2019 Nov 1;19(11):6907-6923 [PMID: 31039842]
  28. Front Immunol. 2018 Apr 17;9:794 [PMID: 29755457]
  29. J Nanosci Nanotechnol. 2015 Jan;15(1):492-503 [PMID: 26328389]
  30. J Cell Biol. 2010 May 31;189(5):783-94 [PMID: 20513765]
  31. J Occup Health. 2017 Sep 28;59(5):394-407 [PMID: 28794394]
  32. Trends Mol Med. 2002 Apr;8(4):179-86 [PMID: 11927276]
  33. Cold Spring Harb Perspect Med. 2016 May 02;6(5): [PMID: 27141080]
  34. J Nanosci Nanotechnol. 2015 Dec;15(12):9925-37 [PMID: 26682436]
  35. Dose Response. 2010 Aug 12;8(4):501-17 [PMID: 21191487]
  36. Nat Rev Immunol. 2016 Aug;16(8):469-84 [PMID: 27346803]
  37. Part Fibre Toxicol. 2012 Apr 03;9:8 [PMID: 22472194]
  38. Toxicol In Vitro. 2017 Aug;42:292-298 [PMID: 28483489]
  39. Int J Cancer. 1989 Apr 15;43(4):685-91 [PMID: 2539332]
  40. Environ Health Perspect. 2005 Jul;113(7):823-39 [PMID: 16002369]
  41. Adv Exp Med Biol. 2020;1233:3-28 [PMID: 32274751]
  42. J Clin Biochem Nutr. 2015 Mar;56(2):111-7 [PMID: 25759516]
  43. J Biol Chem. 2009 Jul 3;284(27):17897-901 [PMID: 19342379]
  44. Nanotoxicology. 2015;9(5):658-76 [PMID: 25676622]
  45. J Toxicol Sci. 2008 Feb;33(1):105-16 [PMID: 18303189]
  46. Mol Cell. 1998 Sep;2(3):305-16 [PMID: 9774969]
  47. Environ Toxicol. 2010 Dec;25(6):608-21 [PMID: 20549644]
  48. Genes Cancer. 2010 Jul 1;1(7):764-778 [PMID: 21331300]

Grants

  1. EPA999999/Intramural EPA

Word Cloud

Created with Highcharts 10.0.0MWCNTsfunctionalizedsignalingpathwaysMWCNThubsnanotubesgenomic3humanlungDNAdamagemicroRNAalteredoxidativerepairOHMulti-walledcytotoxicitydatacellsBEAS-2Beitherunfunctionalizedug/mlstressresponseexcisionproteinCOOHfilteranalysisSignalingcarbonCarbonlacksufficientqualitytoxicitygenotoxicitymakeenvironmentalregulatorydecisionsThereforemultidisciplinarystudyfollowingendpoints:reactiveoxygennitrogenspecieslipidperoxidationmRNAexpressionanalyses-OH-COOHDosesstudiedranged0100exposedcellline72hstudiesdone30downwardexposureNRF2mediatednuclearbasemitochondrialdysfunctionphosphorylationHIF1��unfoldedubiquitinationferroptosissirtuinsuggestedcausedlargergene/microRNAchangesfollowedleastbiologicallyactivetargetMYChubcommonGRB2ARTP63AGO2presentTP53STAT3BRCA1foundcorrelatedwellpublishedvivopathologicaleffectslikeinflammationcancertreatedmiceEffectsmulti-walledmessageMicro-RNAIPATarget

Similar Articles

Cited By