From nets to networks: tools for deciphering phytoplankton metabolic interactions within communities and their global significance.

Charlotte Nef, Juan Jos�� Pierella Karlusich, Chris Bowler
Author Information
  1. Charlotte Nef: Institut de Biologie de l'��cole Normale Sup��rieure (IBENS), ��cole Normale Sup��rieure, CNRS, INSERM, PSL Universit�� Paris, Paris 75005, France. ORCID
  2. Juan Jos�� Pierella Karlusich: FAS Division of Science, Harvard University, Cambridge, MA 02138, USA. ORCID
  3. Chris Bowler: Institut de Biologie de l'��cole Normale Sup��rieure (IBENS), ��cole Normale Sup��rieure, CNRS, INSERM, PSL Universit�� Paris, Paris 75005, France. ORCID

Abstract

Our oceans are populated with a wide diversity of planktonic organisms that form complex dynamic communities at the base of marine trophic networks. Within such communities are phytoplankton, unicellular photosynthetic taxa that provide an estimated half of global primary production and support biogeochemical cycles, along with other essential ecosystem services. One of the major challenges for microbial ecologists has been to try to make sense of this complexity. While phytoplankton distributions can be well explained by abiotic factors such as temperature and nutrient availability, there is increasing evidence that their ecological roles are tightly linked to their metabolic interactions with other plankton members through complex mechanisms (e.g. competition and symbiosis). Therefore, unravelling phytoplankton metabolic interactions is the key for inferring their dependency on, or antagonism with, other taxa and better integrating them into the context of carbon and nutrient fluxes in marine trophic networks. In this review, we attempt to summarize the current knowledge brought by ecophysiology, organismal imaging, predictions and co-occurrence networks using 'omics data, highlighting successful combinations of approaches that may be helpful for future investigations of phytoplankton metabolic interactions within their complex communities.This article is part of the theme issue 'Connected interactions: enriching food web research by spatial and social interactions'.

Keywords

References

  1. Nat Ecol Evol. 2017 Apr 20;1(5):145 [PMID: 28812681]
  2. Science. 2020 May 15;368(6492): [PMID: 32409447]
  3. Appl Environ Microbiol. 2011 Mar;77(5):1816-21 [PMID: 21216909]
  4. Microb Cell Fact. 2012 Sep 11;11:122 [PMID: 22963408]
  5. Nat Biotechnol. 2010 Mar;28(3):245-8 [PMID: 20212490]
  6. ISME Commun. 2022 Jul 6;2(1):55 [PMID: 37938753]
  7. Nat Commun. 2016 Aug 24;7:12573 [PMID: 27553393]
  8. Nature. 2015 Jun 4;522(7554):98-101 [PMID: 26017307]
  9. ISME J. 2020 Oct;14(10):2395-2406 [PMID: 32523086]
  10. Sci Prog. 1960;11:150-70 [PMID: 24545739]
  11. Mar Drugs. 2020 Jan 25;18(2): [PMID: 31991720]
  12. Cell Genom. 2022 Apr 28;2(5):100123 [PMID: 36778897]
  13. Nature. 2004 Apr 8;428(6983):653-7 [PMID: 15071595]
  14. Sci Adv. 2021 Aug 27;7(35): [PMID: 34452910]
  15. Curr Opin Biotechnol. 2016 Oct;41:114-121 [PMID: 27419912]
  16. Science. 2012 Sep 21;337(6101):1546-50 [PMID: 22997339]
  17. Sci Data. 2018 Jan 16;5:170203 [PMID: 29337314]
  18. mBio. 2012 May 02;3(2): [PMID: 22448042]
  19. Nat Rev Microbiol. 2020 Aug;18(8):428-445 [PMID: 32398798]
  20. Science. 2015 May 22;348(6237):1262073 [PMID: 25999517]
  21. Proc Natl Acad Sci U S A. 2014 May 20;111(20):E2149-56 [PMID: 24778240]
  22. Rev Fish Biol Fish. 2022;32(1):19-36 [PMID: 33424142]
  23. Proc Natl Acad Sci U S A. 2015 May 19;112(20):6449-54 [PMID: 25941371]
  24. PNAS Nexus. 2023 Jun 27;2(6):pgad194 [PMID: 37383020]
  25. Cell. 2019 Nov 14;179(5):1068-1083.e21 [PMID: 31730850]
  26. ISME J. 2022 Apr;16(4):927-936 [PMID: 34697433]
  27. Science. 2012 Nov 23;338(6110):1085-8 [PMID: 23112294]
  28. Nat Rev Microbiol. 2012 Jul 16;10(8):538-50 [PMID: 22796884]
  29. Nat Commun. 2024 Mar 28;15(1):2721 [PMID: 38548725]
  30. Proc Natl Acad Sci U S A. 2021 Mar 16;118(11): [PMID: 33707211]
  31. Nat Commun. 2021 Jul 6;12(1):4160 [PMID: 34230473]
  32. mSystems. 2021 May 4;6(3): [PMID: 33947808]
  33. PLoS Biol. 2007 Mar;5(3):e16 [PMID: 17355171]
  34. PLoS Biol. 2007 Mar;5(3):e77 [PMID: 17355176]
  35. Proc Natl Acad Sci U S A. 2017 Aug 1;114(31):E6361-E6370 [PMID: 28716924]
  36. ISME J. 2022 Feb;16(2):477-487 [PMID: 34429522]
  37. Mol Biol Evol. 2019 Nov 1;36(11):2522-2535 [PMID: 31259367]
  38. Microbiol Mol Biol Rev. 2012 Sep;76(3):667-84 [PMID: 22933565]
  39. ISME J. 2007 Oct;1(6):492-501 [PMID: 18043651]
  40. Nature. 2004 Mar 4;428(6978):37-43 [PMID: 14961025]
  41. ISME J. 2016 Jun;10(6):1424-36 [PMID: 26684730]
  42. Org Biomol Chem. 2010 Jan 7;8(1):234-46 [PMID: 20024154]
  43. Cell. 2019 Dec 12;179(7):1451-1454 [PMID: 31835026]
  44. Nat Chem. 2011 Apr;3(4):331-5 [PMID: 21430694]
  45. Nat Microbiol. 2017 Nov;2(11):1533-1542 [PMID: 28894102]
  46. ISME J. 2020 Feb;14(2):347-363 [PMID: 31624346]
  47. Mol Ecol. 2019 Jan;28(2):420-430 [PMID: 30408260]
  48. Nat Commun. 2018 Jan 25;9(1):373 [PMID: 29371626]
  49. Curr Biol. 2018 Nov 19;28(22):3625-3633.e3 [PMID: 30416058]
  50. J Gen Microbiol. 1957 Feb;16(1):286-93 [PMID: 13406239]
  51. Proc Natl Acad Sci U S A. 2023 May 16;120(20):e2213271120 [PMID: 37159478]
  52. ISME J. 2011 Sep;5(9):1484-93 [PMID: 21451586]
  53. ISME J. 2019 Nov;13(11):2647-2655 [PMID: 31253856]
  54. Proc Natl Acad Sci U S A. 2021 Jul 6;118(27): [PMID: 34215695]
  55. Protist. 2016 Apr;167(2):106-20 [PMID: 26927496]
  56. Nat Microbiol. 2019 Oct;4(10):1706-1715 [PMID: 31332382]
  57. Elife. 2017 Oct 31;6: [PMID: 29087936]
  58. Mol Ecol Resour. 2023 Jan;23(1):16-40 [PMID: 35108459]
  59. Nat Rev Genet. 2014 Feb;15(2):107-20 [PMID: 24430943]
  60. Science. 1998 Jul 10;281(5374):237-40 [PMID: 9657713]
  61. Metabolomics. 2022 Mar 02;18(3):17 [PMID: 35235054]
  62. PLoS One. 2008 Jan 23;3(1):e1456 [PMID: 18213365]
  63. Microbiome. 2018 Jun 9;6(1):105 [PMID: 29885666]
  64. Genome Res. 2010 Jul;20(7):947-59 [PMID: 20458099]
  65. Proc Natl Acad Sci U S A. 2015 Jan 13;112(2):453-7 [PMID: 25548163]
  66. Science. 2015 Feb 13;347(6223):1257594 [PMID: 25678667]
  67. J Phycol. 1968 Mar;4(1):59-64 [PMID: 27067774]
  68. Science. 2004 Jul 16;305(5682):354-60 [PMID: 15256663]
  69. Environ Microbiol. 2007 Jun;9(6):1464-75 [PMID: 17504484]
  70. J R Soc Interface. 2014 Jul 6;11(96): [PMID: 24829281]
  71. Front Microbiol. 2021 Nov 15;12:746297 [PMID: 34867861]
  72. Sci Data. 2017 Aug 01;4:170093 [PMID: 28763055]
  73. Science. 2015 May 22;348(6237):1261605 [PMID: 25999516]
  74. Nat Microbiol. 2022 Sep;7(9):1466-1479 [PMID: 35970961]
  75. Cell Syst. 2019 Sep 25;9(3):286-296.e8 [PMID: 31542415]
  76. PLoS Comput Biol. 2018 May 23;14(5):e1006146 [PMID: 29791443]
  77. ISME J. 2020 Feb;14(2):399-412 [PMID: 31636364]
  78. ISME J. 2017 Sep;11(9):2090-2101 [PMID: 28534879]
  79. ISME J. 2021 Nov;15(11):3111-3118 [PMID: 34108668]
  80. ISME J. 2018 Apr;12(4):997-1007 [PMID: 29382945]
  81. Nature. 2009 May 14;459(7244):193-9 [PMID: 19444205]
  82. PLoS One. 2021 May 20;16(5):e0251643 [PMID: 34014955]
  83. Science. 2012 Feb 3;335(6068):587-90 [PMID: 22301318]
  84. Front Microbiol. 2017 Jul 06;8:1122 [PMID: 28729854]
  85. Environ Microbiol. 2012 Jun;14(6):1466-76 [PMID: 22463064]
  86. Front Microbiol. 2017 Sep 26;8:1848 [PMID: 29018424]
  87. Cell. 2019 Nov 14;179(5):1084-1097.e21 [PMID: 31730851]
  88. Nat Commun. 2022 Feb 10;13(1):799 [PMID: 35145076]
  89. Science. 2015 May 22;348(6237):1261359 [PMID: 25999513]
  90. ISME J. 2015 Mar;9(3):782-92 [PMID: 25290506]
  91. Nucleic Acids Res. 2018 Sep 6;46(15):7542-7553 [PMID: 30192979]
  92. Proc Natl Acad Sci U S A. 2016 Mar 15;113(11):2964-9 [PMID: 26903635]
  93. Proc Natl Acad Sci U S A. 2014 Jul 15;111(28):10239-44 [PMID: 24982135]
  94. Nature. 2016 Apr 28;532(7600):504-7 [PMID: 27096373]
  95. Nature. 2016 Apr 28;532(7600):465-470 [PMID: 26863193]
  96. Microbiome. 2020 Apr 2;8(1):47 [PMID: 32241287]
  97. ISME J. 2020 Aug;14(8):2105-2115 [PMID: 32405026]
  98. PeerJ. 2020 Oct 30;8:e10119 [PMID: 33194386]
  99. Nat Microbiol. 2017 May 30;2:17065 [PMID: 28555622]
  100. Photosynth Res. 1994 Mar;39(3):235-58 [PMID: 24311124]
  101. Annu Rev Microbiol. 2003;57:369-94 [PMID: 14527284]
  102. PLoS Comput Biol. 2014 Sep 04;10(9):e1003827 [PMID: 25188426]
  103. Cell. 2008 Sep 5;134(5):708-13 [PMID: 18775300]
  104. Nat Biotechnol. 2017 Aug 8;35(8):725-731 [PMID: 28787424]
  105. Plant Cell. 2015 Sep;27(9):2353-69 [PMID: 26392080]

Grants

  1. /Universit�� de Recherche Paris Sciences et Lettres
  2. /Horizon 2020 Framework Programme
  3. /Fonds Fran��ais pour l'Environnement Mondial
  4. /Simons Foundation
  5. /Agence Nationale de la Recherche
  6. /HORIZON EUROPE European Research Council

MeSH Term

Phytoplankton
Food Chain
Ecosystem

Word Cloud

Created with Highcharts 10.0.0phytoplanktoninteractionscommunitiesmetaboliccomplexnetworksoceansmarinetrophictaxaglobalnutrientwithinpopulatedwidediversityplanktonicorganismsformdynamicbaseWithinunicellularphotosyntheticprovideestimatedhalfprimaryproductionsupportbiogeochemicalcyclesalongessentialecosystemservicesOnemajorchallengesmicrobialecologiststrymakesensecomplexitydistributionscanwellexplainedabioticfactorstemperatureavailabilityincreasingevidenceecologicalrolestightlylinkedplanktonmembersmechanismsegcompetitionsymbiosisThereforeunravellingkeyinferringdependencyantagonismbetterintegratingcontextcarbonfluxesreviewattemptsummarizecurrentknowledgebroughtecophysiologyorganismalimagingpredictionsco-occurrenceusing'omicsdatahighlightingsuccessfulcombinationsapproachesmayhelpfulfutureinvestigationsThisarticlepartthemeissue'Connectedinteractions:enrichingfoodwebresearchspatialsocialinteractions'netsnetworks:toolsdecipheringsignificanceTarabioticmetagenomicssymbioses

Similar Articles

Cited By (1)