Microglia targeting by adeno-associated viral vectors.

Maria Stamataki, Björn Rissiek, Tim Magnus, Jakob Körbelin
Author Information
  1. Maria Stamataki: ENDomics Lab, Department of Oncology, Hematology & Bone Marrow Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
  2. Björn Rissiek: Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
  3. Tim Magnus: Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
  4. Jakob Körbelin: ENDomics Lab, Department of Oncology, Hematology & Bone Marrow Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.

Abstract

Microglia play a crucial role in maintaining homeostasis of the central nervous system and they are actively involved in shaping the brain's inflammatory response to stress. Among the multitude of involved molecules, purinergic receptors and enzymes are of special importance due to their ability to regulate microglia activation. By investigating the mechanisms underlying microglial responses and dysregulation, researchers can develop more precise interventions to modulate microglial behavior and alleviate neuroinflammatory processes. Studying gene function selectively in microglia, however, remains technically challenging. This review article provides an overview of adeno-associated virus (AAV)-based microglia targeting approaches, discussing potential prospects for refining these approaches to improve both specificity and effectiveness and encouraging future investigations aimed at connecting the potential of AAV-mediated microglial targeting for therapeutic benefit in neurological disorders.

Keywords

References

  1. MicroPubl Biol. 2024 Feb 29;2024: [PMID: 38495586]
  2. Exp Mol Med. 2011 Jan 31;43(1):7-14 [PMID: 21088470]
  3. Front Cell Neurosci. 2022 Mar 10;16:808598 [PMID: 35360489]
  4. J Cereb Blood Flow Metab. 2015 May;35(5):843-50 [PMID: 25605289]
  5. Neurosci Lett. 2018 Feb 5;665:182-188 [PMID: 29175632]
  6. Mol Ther. 2018 Mar 7;26(3):664-668 [PMID: 29428298]
  7. J Neurochem. 2016 Jan;136 Suppl 1:49-62 [PMID: 25708596]
  8. Mol Ther Methods Clin Dev. 2020 Oct 20;19:447-458 [PMID: 33294493]
  9. Mol Ther. 2019 Nov 6;27(11):2018-2037 [PMID: 31420242]
  10. J Virol. 2012 Oct;86(19):10408-17 [PMID: 22787229]
  11. EMBO Mol Med. 2018 Aug;10(8): [PMID: 29973381]
  12. Nat Cardiovasc Res. 2022 Apr;1(4):389-400 [PMID: 35571675]
  13. Mol Ther Methods Clin Dev. 2019 Jan 08;12:223-232 [PMID: 30775404]
  14. Mol Ther Methods Clin Dev. 2021 May 29;22:52-65 [PMID: 34485594]
  15. Nat Neurosci. 2013 Dec;16(12):1896-905 [PMID: 24162652]
  16. Nat Methods. 2022 Aug;19(8):976-985 [PMID: 35879607]
  17. Gene Ther. 2021 Dec;28(12):683-696 [PMID: 33658649]
  18. Nat Biotechnol. 2016 Feb;34(2):204-9 [PMID: 26829320]
  19. Mol Ther Methods Clin Dev. 2022 Aug 01;26:331-342 [PMID: 35990749]
  20. Front Cell Neurosci. 2020 Aug 06;14:198 [PMID: 32848611]
  21. Mol Ther Methods Clin Dev. 2016 Apr 13;3:16026 [PMID: 27308302]
  22. Mol Ther Methods Clin Dev. 2021 Sep 14;23:210-224 [PMID: 34703843]
  23. Mol Ther Methods Clin Dev. 2019 Sep 16;15:211-220 [PMID: 31687421]
  24. J Neuroinflammation. 2021 Nov 6;18(1):258 [PMID: 34742308]
  25. Ann Transl Med. 2015 Jun;3(10):136 [PMID: 26207229]
  26. Mol Ther. 2016 Jun;24(6):1050-1061 [PMID: 27018516]
  27. Front Cell Neurosci. 2013 Apr 17;7:45 [PMID: 23616747]
  28. EMBO Mol Med. 2016 Jun 01;8(6):609-25 [PMID: 27137490]
  29. Immunol Cell Biol. 2014 Feb;92(2):116-23 [PMID: 24217810]
  30. Front Pharmacol. 2022 Oct 10;13:1029236 [PMID: 36299894]
  31. Front Immunol. 2020 Mar 20;11:374 [PMID: 32265902]
  32. Mol Ther Methods Clin Dev. 2019 Jan 26;12:248-265 [PMID: 30815511]
  33. Commun Biol. 2022 Nov 11;5(1):1224 [PMID: 36369525]
  34. Neurobiol Dis. 2012 Mar;45(3):954-61 [PMID: 22186422]
  35. J Control Release. 2023 Mar;355:458-473 [PMID: 36736907]
  36. J Neurosci. 2009 Mar 25;29(12):3781-91 [PMID: 19321774]
  37. Proc Natl Acad Sci U S A. 2023 Aug 29;120(35):e2302997120 [PMID: 37603759]

MeSH Term

Dependovirus
Humans
Microglia
Genetic Vectors
Animals
Genetic Therapy

Word Cloud

Created with Highcharts 10.0.0microgliatargetingmicroglialadeno-associatedMicrogliainvolvedpurinergicgenevirusAAVapproachespotentialplaycrucialrolemaintaininghomeostasiscentralnervoussystemactivelyshapingbrain'sinflammatoryresponsestressAmongmultitudemoleculesreceptorsenzymesspecialimportancedueabilityregulateactivationinvestigatingmechanismsunderlyingresponsesdysregulationresearcherscandeveloppreciseinterventionsmodulatebehavioralleviateneuroinflammatoryprocessesStudyingfunctionselectivelyhoweverremainstechnicallychallengingreviewarticleprovidesoverview-baseddiscussingprospectsrefiningimprovespecificityeffectivenessencouragingfutureinvestigationsaimedconnectingAAV-mediatedtherapeuticbenefitneurologicaldisordersviralvectorsneuroinflammationsignaling

Similar Articles

Cited By