COVID-19's influence on Karachi stock exchange: A comparative machine learning algorithms study for forecasting.

Tahir Munir, Rabia Emhamed Al Mamlook, Abdu R Rahman, Afaf Alrashidi, Aqsa Muhammad Yaseen
Author Information
  1. Tahir Munir: Department of Anaesthesiology, The Aga Khan University, Karachi, 74800, Pakistan.
  2. Rabia Emhamed Al Mamlook: Department of Business Administration, Trine University, Angola, IN, 49008, USA.
  3. Abdu R Rahman: Institute for Global Health and Development, The Aga Khan University, Karachi, 74800, Pakistan.
  4. Afaf Alrashidi: Department of Statistics, College of Science, University of Tabuk, Saudi Arabia.
  5. Aqsa Muhammad Yaseen: Department of Sociology, University of Karachi, Pakistan.

Abstract

The COVID-19 pandemic has great effects for economies internationally. This study studies the interconnection between COVID-19 metrics and Pakistan's premier stock exchange, the Karachi Stock Exchange (KSE) with the object of identifying the most effective machine learning (ML) model for predicting KSE developments in the pandemic. Our investigation periods the peak COVID-19 period from March 1, 2020, to November 26, 2021, applying data from both the KSE 100 index and COVID-19 associated variables. Five various ML methods were applied involving Linear Regression (LR), K-Nearest Neighbors (KNN), Random Forest (RF), Regression Tree (Rtree), and Support Vector Machine (SVM) and measured their performance employing critical accuracy metrics such as Mean Absolute Percentage Error (MAPE), Mean Squared Error (MSE), Mean Absolute Error (MAE), and R-squared (R). The outcomes discover that the RF model outperformed its equivalents realizing an R of 0.91 with k = 5. These results conflict with a previous study that supported a negative impact of COVID-19 on improved stock markets. The visions from this study can assist investors in managing strategic investment decisions and assist policymakers in making measures to reduce the pandemic's effects on the stock market.

Keywords

References

  1. Financ Res Lett. 2020 Jul;35:101597 [PMID: 32550842]
  2. Transp Policy (Oxf). 2023 Jan;130:130-140 [PMID: 36405375]
  3. Financ Res Lett. 2021 Jan;38:101604 [PMID: 32837363]
  4. Financ Res Lett. 2021 Jan;38:101640 [PMID: 32837366]
  5. Res Int Bus Finance. 2020 Dec;54:101249 [PMID: 34170989]
  6. Financ Res Lett. 2020 Nov;37:101748 [PMID: 32895607]
  7. J Behav Exp Finance. 2021 Mar;29:100454 [PMID: 33520663]
  8. Financ Res Lett. 2020 Jul;35:101512 [PMID: 32562472]
  9. Res Int Bus Finance. 2023 Jan;64:101881 [PMID: 36687319]
  10. J Econ Bus. 2021 May-Jun;115:105966 [PMID: 33518845]
  11. Financ Res Lett. 2022 Mar;45:102145 [PMID: 35221812]
  12. J Behav Exp Finance. 2020 Sep;27:100371 [PMID: 32835011]
  13. Financ Res Lett. 2021 Jan;38:101701 [PMID: 32837381]
  14. J Behav Exp Finance. 2021 Mar;29:100428 [PMID: 33269212]
  15. Sci Rep. 2023 Mar 13;13(1):4126 [PMID: 36914765]
  16. Technol Forecast Soc Change. 2023 May;190:122470 [PMID: 36896408]
  17. Financ Res Lett. 2020 Oct;36:101682 [PMID: 32837376]
  18. Transp Res Interdiscip Perspect. 2021 Dec;12:100470 [PMID: 34568808]
  19. Financ Res Lett. 2020 Oct;36:101658 [PMID: 32837370]
  20. Qual Quant. 2023;57(3):2231-2248 [PMID: 35789758]
  21. Econ Disaster Clim Chang. 2021;5(1):1-52 [PMID: 33319165]
  22. J Behav Exp Finance. 2020 Sep;27:100326 [PMID: 32292707]
  23. Expert Syst Appl. 2023 May 1;217:119549 [PMID: 36694806]

Word Cloud

Created with Highcharts 10.0.0COVID-19stockstudymetricsKarachiKSElearningMeanErrorpandemiceffectsexchangemachineMLmodelindexRegressionRFMachineAbsoluteRassistgreateconomiesinternationallystudiesinterconnectionPakistan'spremierStockExchangeobjectidentifyingeffectivepredictingdevelopmentsinvestigationperiodspeakperiodMarch12020November262021applyingdata100associatedvariablesFivevariousmethodsappliedinvolvingLinearLRK-NearestNeighborsKNNRandomForestTreeRtreeSupportVectorSVMmeasuredperformanceemployingcriticalaccuracyPercentageMAPESquaredMSEMAER-squaredoutcomesdiscoveroutperformedequivalentsrealizing091k = 5resultsconflictprevioussupportednegativeimpactimprovedmarketsvisionscaninvestorsmanagingstrategicinvestmentdecisionspolicymakersmakingmeasuresreducepandemic'smarketCOVID-19'sinfluenceexchange:comparativealgorithmsforecastingKSE-100Performance

Similar Articles

Cited By