Optical redox imaging to screen synthetic hydrogels for stem cell-derived cardiomyocyte differentiation and maturation.

Danielle E Desa, Margot J Amitrano, William L Murphy, Melissa C Skala
Author Information
  1. Danielle E Desa: Morgridge Institute for Research, Madison, Wisconsin, United States. ORCID
  2. Margot J Amitrano: University of Wisconsin-Madison, Department of Biomedical Engineering, Madison, Wisconsin, United States. ORCID
  3. William L Murphy: University of Wisconsin-Madison, Department of Biomedical Engineering, Madison, Wisconsin, United States.
  4. Melissa C Skala: Morgridge Institute for Research, Madison, Wisconsin, United States. ORCID

Abstract

Significance: Heart disease is the leading cause of death in the United States, yet research is limited by the inability to culture primary cardiac cells. Cardiomyocytes (CMs) derived from human induced pluripotent stem cells (iPSCs) are a promising solution for drug screening and disease modeling.
Aim: Induced pluripotent stem cell-derived CM (iPSC-CM) differentiation and maturation studies typically use heterogeneous substrates for growth and destructive verification methods. Reproducible, tunable substrates and touch-free monitoring are needed to identify ideal conditions to produce homogenous, functional CMs.
Approach: We generated synthetic polyethylene glycol-based hydrogels for iPSC-CM differentiation and maturation. Peptide concentrations, combinations, and gel stiffness were tuned independently. Label-free optical redox imaging (ORI) was performed on a widefield microscope in a 96-well screen of gel formulations. We performed live-cell imaging throughout differentiation and early to late maturation to identify key metabolic shifts.
Results: Label-free ORI confirmed the expected metabolic shifts toward oxidative phosphorylation throughout the differentiation and maturation processes of iPSC-CMs on synthetic hydrogels. Furthermore, ORI distinguished high and low differentiation efficiency cell batches in the cardiac progenitor stage.
Conclusions: We established a workflow for medium throughput screening of synthetic hydrogel conditions with the ability to perform repeated live-cell measurements and confirm expected metabolic shifts. These methods have implications for reproducible iPSC-CM generation in biomanufacturing.

Keywords

References

  1. GEN Biotechnol. 2022 Apr 1;1(2):176-191 [PMID: 35586336]
  2. Nat Methods. 2016 Apr 28;13(5):405-14 [PMID: 27123816]
  3. Curr Opin Biomed Eng. 2023 Mar;25: [PMID: 37885458]
  4. Biophys J. 2000 Jul;79(1):144-52 [PMID: 10866943]
  5. Biomark Med. 2010 Apr;4(2):241-63 [PMID: 20406068]
  6. Nat Methods. 2022 Dec;19(12):1634-1641 [PMID: 36344832]
  7. Annu Rev Biomed Eng. 2023 Jun 8;25:413-443 [PMID: 37104650]
  8. Sci Rep. 2018 Apr 3;8(1):5456 [PMID: 29615678]
  9. Stem Cell Res Ther. 2017 Jan 28;8(1):15 [PMID: 28129796]
  10. Stem Cell Res Ther. 2021 Mar 12;12(1):177 [PMID: 33712058]
  11. Cell. 2006 Aug 25;126(4):645-7 [PMID: 16923382]
  12. Stem Cell Reports. 2020 Oct 13;15(4):983-998 [PMID: 33053362]
  13. Invest Ophthalmol Vis Sci. 2017 Jul 1;58(9):3311-3318 [PMID: 28672397]
  14. Stem Cell Reports. 2021 Mar 9;16(3):470-477 [PMID: 33577793]
  15. Nat Rev Cardiol. 2020 Jun;17(6):341-359 [PMID: 32015528]
  16. Sci Rep. 2019 Feb 11;9(1):1777 [PMID: 30741960]
  17. Front Cell Dev Biol. 2020 Feb 28;8:87 [PMID: 32181250]
  18. Cell Stem Cell. 2012 Jan 6;10(1):16-28 [PMID: 22226352]
  19. Cell Stem Cell. 2016 Oct 6;19(4):476-490 [PMID: 27618217]
  20. J Biomed Opt. 2021 May;26(5): [PMID: 34032035]
  21. STAR Protoc. 2020 Jun 19;1(1): [PMID: 32734277]
  22. Circ J. 2013;77(5):1307-14 [PMID: 23400258]
  23. Nat Commun. 2021 Jul 28;12(1):4580 [PMID: 34321477]
  24. Sci Rep. 2015 Dec 21;5:18705 [PMID: 26687770]
  25. J Biomed Opt. 2008 Sep-Oct;13(5):050505 [PMID: 19021377]
  26. J Biol Chem. 1979 Jun 10;254(11):4764-71 [PMID: 220260]
  27. Front Physiol. 2022 Dec 16;13:1077069 [PMID: 36589430]
  28. Sci Rep. 2016 Feb 25;6:21853 [PMID: 26911347]
  29. PLoS One. 2010 Apr 16;5(4):e10075 [PMID: 20419124]
  30. J Cardiovasc Pharmacol. 2010 Aug;56(2):130-40 [PMID: 20505524]
  31. Adv Funct Mater. 2021 Oct 20;31(43): [PMID: 34924914]
  32. Cell Death Discov. 2024 Feb 14;10(1):78 [PMID: 38355681]
  33. Comput Biol Med. 2018 Mar 1;94:55-64 [PMID: 29407998]
  34. Biomed Opt Express. 2020 Sep 16;11(10):5674-5688 [PMID: 33149978]
  35. Nat Methods. 2012 Jun 28;9(7):676-82 [PMID: 22743772]
  36. Nat Biomed Eng. 2017;1: [PMID: 29104816]
  37. Nat Rev Drug Discov. 2017 Feb;16(2):115-130 [PMID: 27980341]
  38. Gene. 2015 Sep 10;569(1):14-20 [PMID: 26074085]
  39. Adv Drug Deliv Rev. 2010 Sep 30;62(12):1175-86 [PMID: 20816906]
  40. Sci Rep. 2019 Jun 24;9(1):9086 [PMID: 31235788]
  41. Sci Rep. 2013 Dec 05;3:3432 [PMID: 24305550]
  42. J Cell Sci. 2008 Nov 15;121(Pt 22):3794-802 [PMID: 18957515]
  43. J Biol Eng. 2013 Mar 21;7(1):7 [PMID: 23517522]
  44. Toxicol Sci. 2017 Mar 1;156(1):25-38 [PMID: 28031415]
  45. Nat Protoc. 2013 Jan;8(1):162-75 [PMID: 23257984]
  46. Front Physiol. 2021 Aug 19;12:710619 [PMID: 34489730]
  47. Nat Methods. 2021 Jan;18(1):100-106 [PMID: 33318659]
  48. iScience. 2023 Mar 01;26(4):106302 [PMID: 36950112]
  49. Cell Rep Methods. 2023 Jul 13;3(7):100523 [PMID: 37533640]
  50. iScience. 2020 Feb 21;23(2):100831 [PMID: 31982780]
  51. J Proteome Res. 2021 Oct 1;20(10):4646-4654 [PMID: 34499502]
  52. Stem Cell Res Ther. 2019 Feb 26;10(1):68 [PMID: 30808416]
  53. Elife. 2022 Feb 24;11: [PMID: 35200139]
  54. Proc Natl Acad Sci U S A. 2017 May 30;114(22):5647-5652 [PMID: 28507138]
  55. Physiol Rev. 2020 Apr 1;100(2):695-724 [PMID: 31751165]
  56. Circulation. 2018 Mar 20;137(12):e67-e492 [PMID: 29386200]
  57. PLoS One. 2012;7(11):e48014 [PMID: 23144844]
  58. Front Cell Dev Biol. 2017 May 05;5:50 [PMID: 28529939]
  59. J Physiol. 2020 Jul;598(14):2941-2956 [PMID: 30571853]
  60. Cell Motil Cytoskeleton. 2005 Jan;60(1):24-34 [PMID: 15573414]
  61. Acta Biomater. 2022 Apr 15;143:115-126 [PMID: 35235867]
  62. JMA J. 2020 Jul 15;3(3):193-200 [PMID: 33150253]
  63. Biophys J. 2012 Jul 3;103(1):L7-9 [PMID: 22828352]
  64. Proc Natl Acad Sci U S A. 1992 Feb 15;89(4):1271-5 [PMID: 1741380]
  65. Front Cell Dev Biol. 2022 Nov 28;10:895162 [PMID: 36518540]
  66. Nat Rev Mater. 2020 Jul;5(7):539-551 [PMID: 32953138]
  67. Front Cell Dev Biol. 2020 Mar 19;8:178 [PMID: 32266260]
  68. Front Cell Neurosci. 2021 Dec 10;15:796903 [PMID: 34955757]
  69. Annu Rev Chem Biomol Eng. 2022 Jun 10;13:255-278 [PMID: 35320695]
  70. Commun Biol. 2021 Dec 10;4(1):1387 [PMID: 34893703]
  71. J Biomed Opt. 2020 May;25(7):1-43 [PMID: 32406215]

Grants

  1. P30 CA014520/NCI NIH HHS
  2. R01 HL165726/NHLBI NIH HHS

Word Cloud

Created with Highcharts 10.0.0differentiationmaturationstemsyntheticimagingpluripotentiPSC-CMhydrogelsORImetabolicshiftscelldiseasecardiaccellsCMsinducedscreeningcell-derivedsubstratesmethodsidentifyconditionsgelLabel-freeredoxperformedscreenlive-cellthroughoutexpectedhydrogelcardiomyocyteSignificance:HeartleadingcausedeathUnitedStatesyetresearchlimitedinabilitycultureprimaryCardiomyocytesderivedhumaniPSCspromisingsolutiondrugmodelingAim:InducedCMstudiestypicallyuseheterogeneousgrowthdestructiveverificationReproducibletunabletouch-freemonitoringneededidealproducehomogenousfunctionalApproach:generatedpolyethyleneglycol-basedPeptideconcentrationscombinationsstiffnesstunedindependentlyopticalwidefieldmicroscope96-wellformulationsearlylatekeyResults:confirmedtowardoxidativephosphorylationprocessesiPSC-CMsFurthermoredistinguishedhighlowefficiencybatchesprogenitorstageConclusions:establishedworkflowmediumthroughputabilityperformrepeatedmeasurementsconfirmimplicationsreproduciblegenerationbiomanufacturingOpticalautofluorescencemanufacturinglabel-free

Similar Articles

Cited By