A novel high-throughput qPCR chip for solving co-infections in RAS farmed rainbow trout.

Juliane Sørensen, Argelia Cuenca, Jacob Günther Schmidt, Simon Brøndgaard Madsen, Tine Moesgaard Iburg, Lone Madsen, Niccoló Vendramin
Author Information
  1. Juliane Sørensen: National Institute of Aquatic Resources DTU Aqua, Section for Fish and Shellfish Diseases, Technical University of Denmark, Kgs. Lyngby, 2800, Denmark.
  2. Argelia Cuenca: National Institute of Aquatic Resources DTU Aqua, Section for Fish and Shellfish Diseases, Technical University of Denmark, Kgs. Lyngby, 2800, Denmark.
  3. Jacob Günther Schmidt: National Institute of Aquatic Resources DTU Aqua, Section for Fish and Shellfish Diseases, Technical University of Denmark, Kgs. Lyngby, 2800, Denmark.
  4. Simon Brøndgaard Madsen: , Højslev, 7840, Denmark.
  5. Tine Moesgaard Iburg: National Institute of Aquatic Resources DTU Aqua, Section for Fish and Shellfish Diseases, Technical University of Denmark, Kgs. Lyngby, 2800, Denmark.
  6. Lone Madsen: National Institute of Aquatic Resources DTU Aqua, Section for Fish and Shellfish Diseases, Technical University of Denmark, Kgs. Lyngby, 2800, Denmark.
  7. Niccoló Vendramin: National Institute of Aquatic Resources DTU Aqua, Section for Fish and Shellfish Diseases, Technical University of Denmark, Kgs. Lyngby, 2800, Denmark. niven@aqua.dtu.dk.

Abstract

Recirculating aquaculture systems (RAS) have become more attractive due to reduced water consumption and effluent discharge. However, intensification of production increases the risk of introducing pathogens at farming sites. The emergence of uncultivable pathogens and RAS pathobiome diversity shifts the traditional disease paradigm from "one pathogen, one disease" to complex multiple-pathogen disease cases. Piscine orthoreovirus genotype 3 (PRV-3) is an excellent example, as it is capable of inducing anemia and heart pathology resembling heart and skeletal muscle inflammation under experimental conditions, and is associated with increased mortality in association with other pathogens in the field. The aim of this study was to develop a method for detection of multiple pathogens and putative pathogens, as co-infections are common in aquaculture. To do this, in the pilot study, we mapped the pathobiome of RAS-farmed rainbow trout (Oncorhynchus mykiss) (commercial RAS, farm A) using both standard diagnostic methods and metabarcording (16S rRNA) to investigate the gill microbiome. During this study, we observed infections with multiple pathogens, and detected two putative gill pathogens Candidatus Branchiomonas cysticola and Candidatus Piscichlamydia salmonis, both of which have been linked with complex gill disease in Atlantic salmon (Salmo salar). Based on the pilot study, we developed and tested a high throughput qPCR (HT-qPCR) chip targeting 22 viral and bacterial pathogens and putative pathogens, followed by a surveillance of a fish cohort in a commercial RAS farm during production (farm B). Co-infection with PRV-3 and Ca. B. cysticola combined with stress inducing management practices may explain the severe disease outbreak observed (37% mortality). The time course study sets the base for a future screening scheme for disease prediction and addresses limitations of the method when testing environmental DNA/RNA.

References

  1. J Fish Dis. 2013 Jan;36(1):9-23 [PMID: 23016520]
  2. Dis Aquat Organ. 2010 Sep 17;91(3):201-11 [PMID: 21133320]
  3. J Virol. 2015 Sep;89(18):9348-67 [PMID: 26136578]
  4. ISME J. 2011 Oct;5(10):1571-9 [PMID: 21472016]
  5. Pathogens. 2022 Aug 03;11(8): [PMID: 36014998]
  6. Nucleic Acids Res. 2013 Jan;41(Database issue):D590-6 [PMID: 23193283]
  7. Pathogens. 2021 Nov 27;10(12): [PMID: 34959503]
  8. Virol J. 2010 Nov 10;7:309 [PMID: 21067578]
  9. PLoS One. 2015 Jul 16;10(7):e0132783 [PMID: 26182345]
  10. PLoS One. 2013 Nov 21;8(11):e80847 [PMID: 24278329]
  11. Dis Aquat Organ. 2013 Oct 11;106(2):103-15 [PMID: 24113244]
  12. Pathogens. 2020 Oct 07;9(10): [PMID: 33036449]
  13. Parasitology. 2009 May;136(6):615-25 [PMID: 19366483]
  14. PLoS One. 2019 Sep 12;14(9):e0222360 [PMID: 31513657]
  15. Curr Protoc. 2024 Jun;4(6):e1069 [PMID: 38865207]
  16. In Vitro. 1980 Feb;16(2):168-79 [PMID: 6767657]
  17. J Comp Pathol. 2018 Aug;163:23-28 [PMID: 30213370]
  18. Fish Shellfish Immunol. 2007 Mar;22(3):151-6 [PMID: 16806971]
  19. Bioinformatics. 2014 Aug 1;30(15):2114-20 [PMID: 24695404]
  20. Dev Biol (Basel). 2006;126:133-45; discussion 325-6 [PMID: 17058489]
  21. Nat Methods. 2013 Oct;10(10):996-8 [PMID: 23955772]
  22. PLoS One. 2017 Jul 5;12(7):e0180293 [PMID: 28678799]
  23. Mol Ecol. 2022 Jan;31(1):134-160 [PMID: 34614262]
  24. Appl Environ Microbiol. 2007 Aug;73(16):5261-7 [PMID: 17586664]
  25. Vet Res. 2018 Mar 13;49(1):30 [PMID: 29534748]
  26. Arch Virol. 2008;153(7):1299-309 [PMID: 18521535]
  27. Fish Shellfish Immunol. 2022 Dec;131:300-311 [PMID: 36202204]
  28. Vet Res. 2019 Feb 18;50(1):14 [PMID: 30777130]
  29. J Fish Dis. 2017 Apr;40(4):453-477 [PMID: 28188649]
  30. Parasit Vectors. 2017 Sep 25;10(1):442 [PMID: 28946913]
  31. J Virol Methods. 2006 Feb;131(2):184-92 [PMID: 16202457]
  32. Bioinformatics. 2011 Nov 1;27(21):2957-63 [PMID: 21903629]
  33. J Fish Dis. 2020 Jul;43(7):729-746 [PMID: 32364277]
  34. Lett Appl Microbiol. 2012 Sep;55(3):224-33 [PMID: 22725694]
  35. Front Microbiol. 2018 Jan 15;8:2664 [PMID: 29379473]
  36. J Fish Dis. 2019 Jul;42(7):1065-1076 [PMID: 31074078]
  37. Sci Rep. 2023 Apr 4;13(1):5473 [PMID: 37016008]
  38. J Fish Dis. 2019 Apr;42(4):559-572 [PMID: 30779211]
  39. J Fish Dis. 2012 Feb;35(2):119-25 [PMID: 22175801]
  40. PLoS One. 2019 Oct 3;14(10):e0222926 [PMID: 31581255]
  41. J Virol. 2011 Jun;85(11):5275-86 [PMID: 21411528]
  42. BMC Microbiol. 2014 Apr 26;14:105 [PMID: 24767577]
  43. J Fish Dis. 2011 Sep;34(9):701-9 [PMID: 21838713]
  44. Front Vet Sci. 2023 Feb 10;10:1112466 [PMID: 36846252]
  45. Nat Methods. 2010 May;7(5):335-6 [PMID: 20383131]
  46. PLoS One. 2015 Jul 15;10(7):e0131638 [PMID: 26176955]
  47. Vet Res. 2016 Oct 4;47(1):98 [PMID: 27716438]
  48. Vet Res. 2015 Mar 06;46:26 [PMID: 25888832]
  49. Front Microbiol. 2021 Mar 08;12:628309 [PMID: 33763046]
  50. Conserv Physiol. 2017 Jun 27;5(1):cox036 [PMID: 28702195]
  51. PLoS One. 2010 Jul 09;5(7):e11487 [PMID: 20634888]
  52. Dis Aquat Organ. 2015 Oct 27;116(3):173-84 [PMID: 26503771]
  53. Dis Aquat Organ. 2013 Mar 13;103(1):35-43 [PMID: 23482383]

Grants

  1. 33111-I-17-054/European Maritime and Fisheries Fund
  2. 34009-19-1510/Grønt Udviklings- og Demonstrations Program

MeSH Term

Animals
Oncorhynchus mykiss
Aquaculture
Coinfection
Fish Diseases
Real-Time Polymerase Chain Reaction
RNA, Ribosomal, 16S
Gills
Microbiota

Chemicals

RNA, Ribosomal, 16S

Word Cloud

Created with Highcharts 10.0.0pathogensRASdiseasestudyputativefarmgillaquacultureproductionpathobiomecomplexPRV-3inducingheartmortalitymethodmultipleco-infectionspilotrainbowtroutcommercialobservedCandidatuscysticolaqPCRchipBRecirculatingsystemsbecomeattractiveduereducedwaterconsumptioneffluentdischargeHoweverintensificationincreasesriskintroducingfarmingsitesemergenceuncultivablediversityshiftstraditionalparadigm"onepathogenonedisease"multiple-pathogencasesPiscineorthoreovirusgenotype3excellentexamplecapableanemiapathologyresemblingskeletalmuscleinflammationexperimentalconditionsassociatedincreasedassociationfieldaimdevelopdetectioncommonmappedRAS-farmedOncorhynchusmykissusingstandarddiagnosticmethodsmetabarcording16SrRNAinvestigatemicrobiomeinfectionsdetectedtwoBranchiomonasPiscichlamydiasalmonislinkedAtlanticsalmonSalmosalarBaseddevelopedtestedhighthroughputHT-qPCRtargeting22viralbacterialfollowedsurveillancefishcohortCo-infectionCacombinedstressmanagementpracticesmayexplainsevereoutbreak37%timecoursesetsbasefuturescreeningschemepredictionaddresseslimitationstestingenvironmentalDNA/RNAnovelhigh-throughputsolvingfarmed

Similar Articles

Cited By

No available data.