Legionella colonization and 3D spatial location within a Pseudomonas biofilm.

Ana Rosa Silva, Luis F Melo, C William Keevil, Ana Pereira
Author Information
  1. Ana Rosa Silva: LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal.
  2. Luis F Melo: LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal.
  3. C William Keevil: School of Biological Sciences, University of Southampton, Southampton, UK.
  4. Ana Pereira: LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal. aalex@fe.up.pt.

Abstract

Biofilms are known to be critical for Legionella settlement in engineered water systems and are often associated with Legionnaire's Disease events. One of the key features of biofilms is their heterogeneous three-dimensional structure which supports the establishment of microbial interactions and confers protection to microorganisms. This work addresses the impact of Legionella pneumophila colonization of a Pseudomonas fluorescens biofilm, as information about the interactions between Legionella and biofilm structures is scarce. It combines a set of meso- and microscale biofilm analyses (Optical Coherence Tomography, Episcopic Differential Interference Contrast coupled with Epifluorescence Microscopy and Confocal Laser Scanning Microscopy) with PNA-FISH labelled L. pneumophila to tackle the following questions: (a) does the biofilm structure change upon L. pneumophila biofilm colonization?; (b) what happens to L. pneumophila within the biofilm over time and (c) where is L. pneumophila preferentially located within the biofilm? Results showed that P. fluorescens structure did not significantly change upon L. pneumophila colonization, indicating the competitive advantage of the first colonizer. Imaging of PNA-labelled L. pneumophila showed that compared to standard culture recovery it colonized to a greater extent the 3-day-old P. fluorescens biofilms, presumably entering in VBNC state by the end of the experiment. L. pneumophila was mostly located in the bottom regions of the biofilm, which is consistent with the physiological requirements of both bacteria and confers enhanced Legionella protection against external aggressions. The present study provides an expedited methodological approach to address specific systematic laboratory studies concerning the interactions between L. pneumophila and biofilm structure that can provide, in the future, insights for public health Legionella management of water systems.

Keywords

References

  1. Microbiology (Reading). 2001 Nov;147(Pt 11):3121-6 [PMID: 11700362]
  2. ISME J. 2019 Dec;13(12):3054-3066 [PMID: 31455806]
  3. ACS Appl Bio Mater. 2023 Aug 21;6(8):3213-3220 [PMID: 37428894]
  4. Environ Microbiol. 2010 Mar;12(3):557-66 [PMID: 19678829]
  5. Microorganisms. 2021 Jun 03;9(6): [PMID: 34205095]
  6. Food Microbiol. 2019 Sep;82:142-150 [PMID: 31027768]
  7. Parasit Vectors. 2013 Sep 19;6:270 [PMID: 24330483]
  8. Sci Rep. 2015 Dec 21;5:18590 [PMID: 26687808]
  9. Appl Environ Microbiol. 2006 Apr;72(4):2885-95 [PMID: 16597995]
  10. J Appl Microbiol. 2009 Aug;107(2):368-78 [PMID: 19302312]
  11. PLoS One. 2013;8(2):e57923 [PMID: 23460914]
  12. Front Microbiol. 2016 Apr 08;7:486 [PMID: 27092135]
  13. Front Microbiol. 2017 Sep 27;8:1865 [PMID: 29021783]
  14. FEMS Microbiol Ecol. 2018 May 1;94(5): [PMID: 29596620]
  15. Microbiology (Reading). 2000 Oct;146 ( Pt 10):2395-2407 [PMID: 11021916]
  16. Int J Mol Sci. 2013 Oct 31;14(11):21660-75 [PMID: 24185913]
  17. Water Res. 2018 Sep 15;141:417-427 [PMID: 29685632]
  18. Biofouling. 2017 Nov;33(10):793-806 [PMID: 28994320]
  19. FEMS Microbiol Ecol. 2013 Apr;84(1):213-22 [PMID: 23228034]
  20. Proc Natl Acad Sci U S A. 2012 Aug 7;109(32):13088-93 [PMID: 22773813]
  21. Biometals. 2015 Apr;28(2):329-39 [PMID: 25686789]
  22. Int J Mol Sci. 2021 Aug 26;22(17): [PMID: 34502150]
  23. Appl Environ Microbiol. 1988 Nov;54(11):2677-82 [PMID: 3214153]
  24. Curr Microbiol. 2008 Nov;57(5):497-502 [PMID: 18839249]
  25. Front Microbiol. 2023 Jan 30;14:1094877 [PMID: 36793878]
  26. Appl Environ Microbiol. 1994 Jun;60(6):1842-51 [PMID: 16349278]
  27. ISME J. 2014 Apr;8(4):894-907 [PMID: 24152718]
  28. Appl Environ Microbiol. 1994 May;60(5):1585-92 [PMID: 8017938]
  29. Biotechnol Annu Rev. 2005;11:355-80 [PMID: 16216783]
  30. Front Microbiol. 2020 May 20;11:1000 [PMID: 32508796]
  31. Emerg Infect Dis. 2002 Sep;8(9):881-90 [PMID: 12194761]
  32. Food Microbiol. 2022 Aug;105:104026 [PMID: 35473979]
  33. Appl Environ Microbiol. 1983 Dec;46(6):1447-9 [PMID: 6660882]
  34. Biotechnol Bioeng. 2002 Apr 20;78(2):164-71 [PMID: 11870607]
  35. Appl Environ Microbiol. 2006 Feb;72(2):1613-22 [PMID: 16461717]
  36. Environ Sci Technol. 2015 Apr 7;49(7):4274-82 [PMID: 25699403]
  37. Water Res. 2019 Jul 1;158:268-279 [PMID: 31048196]
  38. J Microbiol Methods. 2005 Aug;62(2):167-79 [PMID: 16009275]
  39. Bioinformatics. 2022 Mar 4;38(6):1708-1715 [PMID: 34986264]
  40. J Gen Microbiol. 1992 Nov;138(11):2371-80 [PMID: 1479356]
  41. Microb Biotechnol. 2018 Nov;11(6):1008-1016 [PMID: 29243404]
  42. Water Res. 2013 Nov 1;47(17):6606-17 [PMID: 24064547]
  43. Microorganisms. 2021 May 31;9(6): [PMID: 34072656]
  44. Front Cell Infect Microbiol. 2018 Jan 19;8:3 [PMID: 29404281]
  45. Appl Environ Microbiol. 2006 Aug;72(8):5453-62 [PMID: 16885298]
  46. Water Sci Technol. 2007;55(8-9):337-43 [PMID: 17547003]
  47. Front Microbiol. 2018 Jul 31;9:1706 [PMID: 30108564]
  48. Colloids Surf B Biointerfaces. 2011 Oct 15;87(2):427-32 [PMID: 21705201]
  49. Appl Environ Microbiol. 1995 Nov;61(11):3769-74 [PMID: 16535157]
  50. Microb Ecol. 2009 Jul;58(1):56-62 [PMID: 19043657]
  51. Front Cell Infect Microbiol. 2018 Feb 27;8:38 [PMID: 29535972]
  52. Colloids Surf B Biointerfaces. 2011 May 1;84(1):76-81 [PMID: 21216569]
  53. Colloids Surf B Biointerfaces. 2006 Oct 1;52(2):123-7 [PMID: 16757156]
  54. Microbiol Res. 2009;164(6):593-603 [PMID: 17644359]
  55. BMC Microbiol. 2011 Mar 18;11:57 [PMID: 21418578]
  56. Front Microbiol. 2019 Apr 05;10:604 [PMID: 31024468]
  57. Water Res. 2018 Sep 15;141:428-438 [PMID: 29409685]
  58. Sci Total Environ. 2020 Apr 10;712:136131 [PMID: 31931228]
  59. Microb Ecol. 2009 Oct;58(3):538-47 [PMID: 19365668]
  60. Bioinformatics. 2024 Feb 1;40(2): [PMID: 38265243]
  61. Proc Natl Acad Sci U S A. 2007 Jan 16;104(3):876-81 [PMID: 17210916]
  62. PLoS One. 2012;7(11):e50560 [PMID: 23185637]

Grants

  1. LEPABE/Funda����o para a Ci��ncia e a Tecnologia

MeSH Term

Biofilms
Legionella pneumophila
Pseudomonas fluorescens
Legionella
Microscopy, Confocal
Tomography, Optical Coherence

Word Cloud

Created with Highcharts 10.0.0pneumophilabiofilmLegionellaLstructuresystemsinteractionscolonizationfluorescenswithinwaterbiofilmsconfersprotectionPseudomonasMicroscopychangeuponlocatedshowedPspatiallocationBiofilmBiofilmsknowncriticalsettlementengineeredoftenassociatedLegionnaire'sDiseaseeventsOnekeyfeaturesheterogeneousthree-dimensionalsupportsestablishmentmicrobialmicroorganismsworkaddressesimpactinformationstructuresscarcecombinessetmeso-microscaleanalysesOpticalCoherenceTomographyEpiscopicDifferentialInterferenceContrastcoupledEpifluorescenceConfocalLaserScanningPNA-FISHlabelledtacklefollowingquestions:colonization?bhappenstimecpreferentiallybiofilm?ResultssignificantlyindicatingcompetitiveadvantagefirstcolonizerImagingPNA-labelledcomparedstandardculturerecoverycolonizedgreaterextent3-day-oldpresumablyenteringVBNCstateendexperimentmostlybottomregionsconsistentphysiologicalrequirementsbacteriaenhancedexternalaggressionspresentstudyprovidesexpeditedmethodologicalapproachaddressspecificsystematiclaboratorystudiesconcerningcanprovidefutureinsightspublichealthmanagement3DStagnationWater

Similar Articles

Cited By