Multiomic profiling of medulloblastoma reveals subtype-specific targetable alterations at the proteome and N-glycan level.

Shweta Godbole, Hannah Voß, Antonia Gocke, Simon Schlumbohm, Yannis Schumann, Bojia Peng, Martin Mynarek, Stefan Rutkowski, Matthias Dottermusch, Mario M Dorostkar, Andrey Korshunov, Thomas Mair, Stefan M Pfister, Marcel Kwiatkowski, Madlen Hotze, Philipp Neumann, Christian Hartmann, Joachim Weis, Friederike Liesche-Starnecker, Yudong Guan, Manuela Moritz, Bente Siebels, Nina Struve, Hartmut Schlüter, Ulrich Schüller, Christoph Krisp, Julia E Neumann
Author Information
  1. Shweta Godbole: Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany. ORCID
  2. Hannah Voß: Section of Mass Spectrometry and Proteomics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
  3. Antonia Gocke: Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany. ORCID
  4. Simon Schlumbohm: Chair for High Performance Computing, Helmut Schmidt University, Hamburg, Germany.
  5. Yannis Schumann: Chair for High Performance Computing, Helmut Schmidt University, Hamburg, Germany. ORCID
  6. Bojia Peng: Section of Mass Spectrometry and Proteomics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
  7. Martin Mynarek: Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany. ORCID
  8. Stefan Rutkowski: Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
  9. Matthias Dottermusch: Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany. ORCID
  10. Mario M Dorostkar: Center for Neuropathology, Ludwig-Maximilians-University, Munich, Germany.
  11. Andrey Korshunov: Department of Neuropathology, University Hospital Heidelberg, Heidelberg, Germany.
  12. Thomas Mair: Section of Mass Spectrometry and Proteomics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
  13. Stefan M Pfister: Hopp Children's Cancer Center at the NCT Heidelberg (KiTZ), Heidelberg, Germany. ORCID
  14. Marcel Kwiatkowski: Institute of Biochemistry, University of Innsbruck, Innsbruck, Austria. ORCID
  15. Madlen Hotze: Institute of Biochemistry, University of Innsbruck, Innsbruck, Austria.
  16. Philipp Neumann: Chair for High Performance Computing, Helmut Schmidt University, Hamburg, Germany. ORCID
  17. Christian Hartmann: Department of Neuropathology, Hannover Medical School (MHH), Hannover, Germany.
  18. Joachim Weis: Institute of Neuropathology, RWTH Aachen University Hospital, Aachen, Germany. ORCID
  19. Friederike Liesche-Starnecker: Pathology, Medical Faculty, University of Augsburg, Augsburg, Germany.
  20. Yudong Guan: Section of Mass Spectrometry and Proteomics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
  21. Manuela Moritz: Section of Mass Spectrometry and Proteomics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
  22. Bente Siebels: Section of Mass Spectrometry and Proteomics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
  23. Nina Struve: Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
  24. Hartmut Schlüter: Section of Mass Spectrometry and Proteomics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
  25. Ulrich Schüller: Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany. ORCID
  26. Christoph Krisp: Section of Mass Spectrometry and Proteomics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany. ORCID
  27. Julia E Neumann: Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany. ju.neumann@uke.de. ORCID

Abstract

Medulloblastomas (MBs) are malignant pediatric brain tumors that are molecularly and clinically heterogenous. The application of omics technologies-mainly studying nucleic acids-has significantly improved MB classification and stratification, but treatment options are still unsatisfactory. The proteome and their N-glycans hold the potential to discover clinically relevant phenotypes and targetable pathways. We compile a harmonized proteome dataset of 167 MBs and integrate findings with DNA methylome, transcriptome and N-glycome data. We show six proteome MB subtypes, that can be assigned to two main molecular programs: transcription/translation (pSHHt, pWNT and pG3myc), and synapses/immunological processes (pSHHs, pG3 and pG4). Multiomic analysis reveals different conservation levels of proteome features across MB subtypes at the DNA methylome level. Aggressive pGroup3myc MBs and favorable pWNT MBs are most similar in cluster hierarchies concerning overall proteome patterns but show different protein abundances of the vincristine resistance-associated multiprotein complex TriC/CCT and of N-glycan turnover-associated factors. The N-glycome reflects proteome subtypes and complex-bisecting N-glycans characterize pGroup3myc tumors. Our results shed light on targetable alterations in MB and set a foundation for potential immunotherapies targeting glycan structures.

References

  1. Nature. 2020 Apr;580(7803):396-401 [PMID: 32296180]
  2. F1000Res. 2017 Apr 13;6:490 [PMID: 28713553]
  3. Clin Cancer Res. 2011 Apr 1;17(7):1883-94 [PMID: 21325292]
  4. Cancer Cell. 2017 Jun 12;31(6):737-754.e6 [PMID: 28609654]
  5. Neuropathol Appl Neurobiol. 2015 Feb;41(2):135-44 [PMID: 24894640]
  6. J Proteome Res. 2021 May 7;20(5):2914-2922 [PMID: 33829797]
  7. Nature. 2014 Jun 26;510(7506):537-41 [PMID: 24847876]
  8. Neuro Oncol. 2011 Apr;13(4):376-83 [PMID: 21292688]
  9. Nucleic Acids Res. 2024 Jan 5;52(D1):D640-D646 [PMID: 37971328]
  10. Anal Bioanal Chem. 2017 Jan;409(2):395-410 [PMID: 27590322]
  11. Biochim Biophys Acta. 2015 Jun;1854(6):559-80 [PMID: 25315853]
  12. Int J Mol Sci. 2020 Mar 13;21(6): [PMID: 32183020]
  13. Bioinformatics. 2014 May 15;30(10):1363-9 [PMID: 24478339]
  14. Acta Neuropathol. 2016 Jun;131(6):821-31 [PMID: 27040285]
  15. Cancers (Basel). 2018 Jun 18;10(6): [PMID: 29912148]
  16. Acta Neuropathol. 2012 Apr;123(4):615-26 [PMID: 22057785]
  17. PLoS Genet. 2015 Aug 20;11(8):e1005473 [PMID: 26291458]
  18. Bioinformatics. 2017 Mar 1;33(5):654-660 [PMID: 28035025]
  19. Cell. 2020 Dec 23;183(7):1962-1985.e31 [PMID: 33242424]
  20. Cold Spring Harb Perspect Med. 2015 Dec 18;6(2):a026278 [PMID: 26684332]
  21. J Clin Oncol. 2011 Apr 10;29(11):1408-14 [PMID: 20823417]
  22. Mol Cell Proteomics. 2018 Aug;17(8):1578-1590 [PMID: 29773674]
  23. Mol Cell Proteomics. 2009 Aug;8(8):1988-98 [PMID: 19467989]
  24. Bioinformatics. 2010 Jun 15;26(12):1572-3 [PMID: 20427518]
  25. Elife. 2020 Jan 15;9: [PMID: 31939734]
  26. Clin Cancer Res. 2022 Jan 1;28(1):116-128 [PMID: 34702771]
  27. Monoclon Antib Immunodiagn Immunother. 2021 Jun;40(3):89-100 [PMID: 34161162]
  28. Lancet Oncol. 2017 Jul;18(7):958-971 [PMID: 28545823]
  29. Neuro Oncol. 2013 Oct;15(10):1429-37 [PMID: 23956241]
  30. J Neurosurg. 2016 Jun;124(6):1693-702 [PMID: 26473781]
  31. Acta Neuropathol. 2022 Dec;144(6):1143-1156 [PMID: 36181537]
  32. Nucleic Acids Res. 2015 Apr 20;43(7):e47 [PMID: 25605792]
  33. Cancer Cell. 2014 Mar 17;25(3):393-405 [PMID: 24651015]
  34. Oncotarget. 2017 Nov 25;8(66):110273-110288 [PMID: 29299146]
  35. Cell. 2022 Aug 4;185(16):2899-2917.e31 [PMID: 35914528]
  36. Bioinformatics. 2014 Feb 15;30(4):523-30 [PMID: 24336805]
  37. Clin Cancer Res. 2016 Sep 1;22(17):4366-79 [PMID: 27012814]
  38. J Clin Oncol. 2021 Mar 1;39(7):822-835 [PMID: 33405951]
  39. Anal Chem. 2014 Jul 15;86(14):7150-8 [PMID: 24927332]
  40. Nat Commun. 2022 Jan 12;13(1):275 [PMID: 35022400]
  41. FEBS Lett. 2019 Nov;593(21):2966-2976 [PMID: 31509238]
  42. Nat Methods. 2012 Jun 28;9(7):676-82 [PMID: 22743772]
  43. Nature. 2017 Jul 19;547(7663):311-317 [PMID: 28726821]
  44. Cancers (Basel). 2022 Jan 13;14(2): [PMID: 35053536]
  45. Nature. 2018 Mar 22;555(7697):469-474 [PMID: 29539639]
  46. Acta Neuropathol. 2011 Mar;121(3):381-96 [PMID: 21267586]
  47. Bioinformatics. 2016 Sep 15;32(18):2847-9 [PMID: 27207943]
  48. Nat Commun. 2019 Jan 16;10(1):241 [PMID: 30651562]
  49. Genome Res. 2003 Nov;13(11):2498-504 [PMID: 14597658]
  50. Nucleic Acids Res. 2020 Jan 8;48(D1):D498-D503 [PMID: 31691815]
  51. Cell. 2006 Sep 8;126(5):855-67 [PMID: 16959566]
  52. Nat Rev Cancer. 2020 Jan;20(1):42-56 [PMID: 31819232]
  53. Nucleic Acids Res. 2013 Apr;41(7):e90 [PMID: 23476028]
  54. Nat Protoc. 2019 Feb;14(2):482-517 [PMID: 30664679]
  55. PLoS Comput Biol. 2017 Nov 3;13(11):e1005752 [PMID: 29099853]
  56. Methods Mol Biol. 2018;1711:133-148 [PMID: 29344888]
  57. Cell Rep Med. 2020 Jun 23;1(3): [PMID: 32743560]
  58. Acta Neuropathol. 2012 Apr;123(4):465-72 [PMID: 22134537]
  59. Medicines (Basel). 2019 Oct 13;6(4): [PMID: 31614918]
  60. J Clin Oncol. 2005 Nov 1;23(31):7951-7 [PMID: 16258095]
  61. Nat Rev Immunol. 2018 Mar;18(3):204-211 [PMID: 29398707]
  62. Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15545-50 [PMID: 16199517]
  63. Clin Cancer Res. 2017 Oct 1;23(19):5802-5813 [PMID: 28637687]
  64. J Neuropathol Exp Neurol. 2020 Apr 1;79(4):437-447 [PMID: 32053195]
  65. Cell Cycle. 2006 Nov;5(22):2666-70 [PMID: 17172831]
  66. Cell Adh Migr. 2015;9(1-2):96-104 [PMID: 25793576]
  67. J Proteome Res. 2023 Mar 3;22(3):951-966 [PMID: 36763818]
  68. Nat Protoc. 2016 Dec;11(12):2301-2319 [PMID: 27809316]
  69. J Neurosurg Pediatr. 2013 Nov;12(5):452-7 [PMID: 23992239]
  70. Cells. 2021 May 04;10(5): [PMID: 34064396]
  71. Glycoconj J. 2021 Jun;38(3):387-395 [PMID: 33877489]
  72. Nature. 2019 Sep;573(7775):539-545 [PMID: 31534222]
  73. Gene. 2019 Jul 15;705:67-76 [PMID: 30991098]
  74. Front Chem. 2020 Jul 03;8:511 [PMID: 32719771]
  75. Cancer Cell. 2018 Sep 10;34(3):396-410.e8 [PMID: 30205044]
  76. Nat Methods. 2020 Jan;17(1):41-44 [PMID: 31768060]
  77. Neuro Oncol. 2015 Apr;17(4):545-54 [PMID: 25253417]
  78. Proteomics. 2012 Apr;12(7):1045-58 [PMID: 22318899]
  79. J Pathol. 2021 Mar;253(3):326-338 [PMID: 33206391]
  80. Nat Protoc. 2018 Jul;13(7):1632-1661 [PMID: 29988108]
  81. Neuro Oncol. 2021 Aug 2;23(8):1231-1251 [PMID: 34185076]
  82. Cancer Drug Resist. 2020 Mar 19;3(1):48-62 [PMID: 35582046]
  83. Nat Commun. 2022 Jun 20;13(1):3523 [PMID: 35725563]
  84. Brain Pathol. 2022 Jul;32(4):e13059 [PMID: 35266242]
  85. Proteomics. 2016 Jul;16(13):1863-7 [PMID: 27125885]
  86. J Hematol Oncol. 2019 Mar 15;12(1):29 [PMID: 30876441]
  87. Ann Clin Transl Neurol. 2019 Mar 19;6(5):990-1005 [PMID: 31139698]
  88. Cell. 2019 May 2;177(4):1035-1049.e19 [PMID: 31031003]
  89. Nucleic Acids Res. 2022 Jul 5;50(W1):W345-W351 [PMID: 35446428]
  90. Cancer Cell. 2016 Apr 11;29(4):508-522 [PMID: 27050100]
  91. Cell Death Dis. 2020 Dec 2;11(12):1029 [PMID: 33268769]
  92. Acta Neuropathol. 2016 Jun;131(6):803-20 [PMID: 27157931]
  93. Nat Protoc. 2019 Jan;14(1):68-85 [PMID: 30464214]
  94. Turk J Med Sci. 2019 Oct 24;49(5):1547-1554 [PMID: 31652035]
  95. Front Oncol. 2022 Feb 21;12:836452 [PMID: 35265526]
  96. Nucleic Acids Res. 2021 Jan 8;49(D1):D1523-D1528 [PMID: 33174597]
  97. Acta Neuropathol. 2019 Aug;138(2):309-326 [PMID: 31076851]
  98. Sci Transl Med. 2022 Jan 19;14(628):eabg3072 [PMID: 35044789]
  99. Cancer Cell. 2018 Sep 10;34(3):379-395.e7 [PMID: 30205043]
  100. J Proteome Res. 2021 Jul 2;20(7):3654-3663 [PMID: 34110173]
  101. BMC Bioinformatics. 2023 Mar 20;24(1):101 [PMID: 36941542]

Grants

  1. 416054672/Deutsche Forschungsgemeinschaft (German Research Foundation)

MeSH Term

Medulloblastoma
Humans
Polysaccharides
Proteome
Cerebellar Neoplasms
DNA Methylation
Transcriptome
Child
Proteomics
Female
Gene Expression Regulation, Neoplastic
Male
Child, Preschool
Gene Expression Profiling

Chemicals

Polysaccharides
Proteome

Word Cloud

Created with Highcharts 10.0.0proteomeMBsMBtargetablesubtypestumorsclinicallyN-glycanspotentialDNAmethylomeN-glycomeshowpWNTMultiomicrevealsdifferentlevelpGroup3mycN-glycanalterationsMedulloblastomasmalignantpediatricbrainmolecularlyheterogenousapplicationomicstechnologies-mainlystudyingnucleicacids-hassignificantlyimprovedclassificationstratificationtreatmentoptionsstillunsatisfactoryholddiscoverrelevantphenotypespathwayscompileharmonizeddataset167integratefindingstranscriptomedatasixcanassignedtwomainmolecularprograms:transcription/translationpSHHtpG3mycsynapses/immunologicalprocessespSHHspG3pG4analysisconservationlevelsfeaturesacrossAggressivefavorablesimilarclusterhierarchiesconcerningoverallpatternsproteinabundancesvincristineresistance-associatedmultiproteincomplexTriC/CCTturnover-associatedfactorsreflectscomplex-bisectingcharacterizeresultsshedlightsetfoundationimmunotherapiestargetingglycanstructuresprofilingmedulloblastomasubtype-specific

Similar Articles

Cited By