Tracing groundwater nitrate sources in an intensive agricultural region integrated of a self-organizing map and end-member mixing model tool.

Hongbin Gao, Gang Wang, Yanru Fan, Junfeng Wu, Mengyang Yao, Xinfeng Zhu, Xiang Guo, Bei Long, Jie Zhao
Author Information
  1. Hongbin Gao: Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, School of Municipal and Environmental Engineering, Henan University of Urban Construction, Pingdingshan, 467036, China.
  2. Gang Wang: Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, School of Municipal and Environmental Engineering, Henan University of Urban Construction, Pingdingshan, 467036, China.
  3. Yanru Fan: Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, School of Municipal and Environmental Engineering, Henan University of Urban Construction, Pingdingshan, 467036, China. 20171019@huuc.edu.cn.
  4. Junfeng Wu: Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, School of Municipal and Environmental Engineering, Henan University of Urban Construction, Pingdingshan, 467036, China. 20171004@huuc.edu.cn.
  5. Mengyang Yao: Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, School of Municipal and Environmental Engineering, Henan University of Urban Construction, Pingdingshan, 467036, China.
  6. Xinfeng Zhu: Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, School of Municipal and Environmental Engineering, Henan University of Urban Construction, Pingdingshan, 467036, China.
  7. Xiang Guo: Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, School of Municipal and Environmental Engineering, Henan University of Urban Construction, Pingdingshan, 467036, China.
  8. Bei Long: School of Resources and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, China.
  9. Jie Zhao: Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, School of Municipal and Environmental Engineering, Henan University of Urban Construction, Pingdingshan, 467036, China.

Abstract

The traceability of groundwater nitrate pollution is crucial for controlling and managing polluted groundwater. This study integrates hydrochemistry, nitrate isotope (δN-NO and δO-NO), and self-organizing map (SOM) and end-member mixing (EMMTE) models to identify the sources and quantify the contributions of nitrate pollution to groundwater in an intensive agricultural region in the Sha River Basin in southwestern Henan Province. The results indicate that the NO-N concentration in 74% (n = 39) of the groundwater samples exceeded the WHO standard of 10 mg/L. According to the results of EMMTE modeling, soil nitrogen (68.4%) was the main source of nitrate in Cluster-1, followed by manure and sewage (16.5%), chemical fertilizer (11.9%) and atmospheric deposition (3.3%). In Cluster-2, soil nitrogen (60.1%) was the main source of nitrate, with a significant increase in the contribution of manure and sewage (35.5%). The considerable contributions of soil nitrogen may be attributed to the high nitrogen fertilizer usage that accumulated in the soil in this traditional agricultural area. Moreover, it is apparent that most Cluster-2 sampling sites with high contributions of manure and sewage are located around residential land. Therefore, the arbitrary discharge and leaching of domestic sewage may be responsible for these results. Therefore, this study provides useful assistance for the continuous management and pollution control of groundwater in the Sha River Basin.

Keywords

References

  1. Environ Pollut. 2017 Oct;229:586-594 [PMID: 28689147]
  2. Environ Sci Pollut Res Int. 2018 Aug;25(24):24348-24361 [PMID: 29948718]
  3. Sci Total Environ. 2023 Apr 10;868:161728 [PMID: 36681342]
  4. Sci Total Environ. 2023 May 20;874:162524 [PMID: 36868285]
  5. Sci Total Environ. 2018 May 15;624:1513-1522 [PMID: 29929261]
  6. Chemosphere. 2020 Mar;243:125364 [PMID: 31760285]
  7. Anal Chem. 2011 Mar 1;83(5):1850-6 [PMID: 21302935]
  8. J Hazard Mater. 2021 Sep 5;417:126103 [PMID: 34229392]
  9. J Contam Hydrol. 2009 Oct 13;109(1-4):49-61 [PMID: 19717207]
  10. Int J Environ Res Public Health. 2018 Jul 23;15(7): [PMID: 30041450]
  11. Environ Sci Pollut Res Int. 2019 Apr;26(11):11153-11169 [PMID: 30796665]
  12. Water Res. 2021 Jan 1;188:116537 [PMID: 33126005]
  13. Environ Pollut. 2022 Jun 1;302:119052 [PMID: 35227848]
  14. Sci Total Environ. 2023 Nov 10;898:165561 [PMID: 37474072]
  15. Sci Total Environ. 2022 Jun 1;823:153749 [PMID: 35150690]
  16. Environ Sci Technol. 2006 Nov 15;40(22):6928-33 [PMID: 17153996]
  17. Sci Total Environ. 2019 Jan 1;646:801-810 [PMID: 30064106]
  18. Environ Res. 2023 Nov 15;237(Pt 1):116911 [PMID: 37597825]
  19. Environ Pollut. 2018 Apr;235:207-222 [PMID: 29289831]
  20. Environ Pollut. 2023 Jan 1;316(Pt 1):120534 [PMID: 36341828]
  21. Sci Total Environ. 2023 Dec 15;904:166927 [PMID: 37704149]
  22. Environ Pollut. 2016 Sep;216:340-349 [PMID: 27294785]
  23. J Environ Manage. 2023 Jan 1;325(Pt A):116551 [PMID: 36283198]
  24. Environ Res. 2019 Sep;176:108442 [PMID: 31196558]
  25. Water Res. 2019 Oct 15;163:114880 [PMID: 31344507]
  26. Water Res. 2017 Nov 1;124:85-96 [PMID: 28750288]
  27. Sci Total Environ. 2021 Mar 15;760:143938 [PMID: 33333400]
  28. Sci Total Environ. 2017 Dec 31;609:607-620 [PMID: 28763658]
  29. Water Res. 2009 Mar;43(5):1159-70 [PMID: 19157489]
  30. Sci Total Environ. 2020 Dec 10;747:141281 [PMID: 32795797]
  31. Sci Total Environ. 2022 Jan 1;802:149909 [PMID: 34525690]
  32. J Contam Hydrol. 2022 Apr;246:103957 [PMID: 35176529]
  33. Environ Sci Pollut Res Int. 2021 Sep;28(35):48343-48361 [PMID: 33907952]
  34. J Contam Hydrol. 2020 Aug;233:103658 [PMID: 32505052]
  35. Water Res. 2020 Sep 1;182:115962 [PMID: 32629319]
  36. Chemosphere. 2019 Aug;228:721-734 [PMID: 31071559]
  37. Science. 1971 Dec 24;174(4016):1331-4 [PMID: 5135719]

Word Cloud

Created with Highcharts 10.0.0nitrategroundwatersoilnitrogensewagepollutionmapmixingEMMTEsourcescontributionsagriculturalregionresultsmanurestudyself-organizingSOMend-memberintensiveShaRiverBasinmainsource5%fertilizerCluster-2mayhighThereforemodeltooltraceabilitycrucialcontrollingmanagingpollutedintegrateshydrochemistryisotopeδN-NOδO-NOmodelsidentifyquantifysouthwesternHenanProvinceindicateNO-Nconcentration74%n = 39samplesexceededWHOstandard10 mg/LAccordingmodeling684%Cluster-1followed16chemical119%atmosphericdeposition33%601%significantincreasecontribution35considerableattributedusageaccumulatedtraditionalareaMoreoverapparentsamplingsiteslocatedaroundresidentiallandarbitrarydischargeleachingdomesticresponsibleprovidesusefulassistancecontinuousmanagementcontrolTracingintegratedAgriculturalEnd-memberGroundwaterHydrochemistrySelf-organizing

Similar Articles

Cited By