Voronoi diagrams and Delaunay triangulation for modelling animal territorial behaviour.

Rhainer Guillermo-Ferreira, Alexander E Filippov, Alexander Kovalev, Stanislav N Gorb
Author Information
  1. Rhainer Guillermo-Ferreira: Department of Biological Sciences Federal University of Triangulo Mineiro Uberaba Minas Gerais Brazil. ORCID
  2. Alexander E Filippov: Donetsk Institute for Physics and Engineering National Academy of Sciences of Ukraine Donetsk Ukraine.
  3. Alexander Kovalev: Functional Morphology and Biomechanics, Zoological Institute Kiel University Kiel Germany.
  4. Stanislav N Gorb: Functional Morphology and Biomechanics, Zoological Institute Kiel University Kiel Germany.

Abstract

We explore the use of movable automata in numerical modelling of male competition for territory. We used territorial dragonflies as our biological inspiration for the model, assuming two types of competing males: (a) faster and larger males that adopt a face-off strategy and repulse other males; (b) slower and smaller males that adopt a non-aggressive strategy. The faster and larger males have higher noise intensity, leading to faster motion and longer conservation of motion direction. The velocity distributions resemble the Maxwell distributions of velocity, expected in Brownian dynamics, with two probable velocities and distribution widths for the two animal subpopulations. The fast animals' trajectories move between visually fixed density folds of the slower animal subpopulation. A correlation is found between individual velocity and individual area distribution, with smaller animals concentrated in a region of small velocities and areas. Attraction between animals results in a modification of the system behaviour, with larger animals spending more time being surrounded by smaller animals and being slowed down by their interaction with the surroundings. Overall, the study provides insights into the dynamics of animal competition for territory and the impact of attraction between animals.

Keywords

References

  1. Sci Rep. 2020 Aug 31;10(1):14320 [PMID: 32868843]
  2. Science. 2013 Jul 5;341(6141):68-70 [PMID: 23744776]
  3. J Theor Biol. 1980 Feb 7;82(3):477-96 [PMID: 7366228]
  4. Naturwissenschaften. 2019 Jun 10;106(7-8):32 [PMID: 31183554]
  5. Neotrop Entomol. 2011 Jan-Feb;40(1):78-84 [PMID: 21437486]
  6. Trends Ecol Evol. 2014 Jul;29(7):417-28 [PMID: 24908439]
  7. Phys Rev E Stat Nonlin Soft Matter Phys. 2014 May;89(5):052706 [PMID: 25353828]
  8. Naturwissenschaften. 2015 Apr;102(3-4):13 [PMID: 25776927]
  9. PLoS Comput Biol. 2021 Mar 15;17(3):e1008832 [PMID: 33720926]
  10. PLoS One. 2013;8(3):e58525 [PMID: 23555585]
  11. Insects. 2024 Feb 09;15(2): [PMID: 38392544]
  12. PLoS Comput Biol. 2020 Apr 6;16(4):e1007697 [PMID: 32251423]
  13. Proc Biol Sci. 2014 Apr 16;281(1784):20140231 [PMID: 24741017]
  14. PLoS One. 2015 Nov 20;10(11):e0142684 [PMID: 26587979]
  15. PLoS One. 2011;6(12):e28225 [PMID: 22163286]
  16. Int J Geogr Inf Sci. 2018;32(11):2272-2293 [PMID: 30631244]
  17. J Anim Ecol. 2006 Mar;75(2):604-15 [PMID: 16638013]

Word Cloud

Created with Highcharts 10.0.0animalsmalesanimaltwofasterlargersmallervelocitymodellingcompetitionterritoryterritorialmodeladoptstrategyslowermotiondistributionsdynamicsvelocitiesdistributionindividualbehaviourexploreusemovableautomatanumericalmaleuseddragonfliesbiologicalinspirationassumingtypescompetingmales:face-offrepulsebnon-aggressivehighernoiseintensityleadinglongerconservationdirectionresembleMaxwellexpectedBrownianprobablewidthssubpopulationsfastanimals'trajectoriesmovevisuallyfixeddensityfoldssubpopulationcorrelationfoundareaconcentratedregionsmallareasAttractionresultsmodificationsystemspendingtimesurroundedslowedinteractionsurroundingsOverallstudyprovidesinsightsimpactattractionVoronoidiagramsDelaunaytriangulationagent‐basedagonisticcontestecologyevolutiontessellation

Similar Articles

Cited By