Genomic data reveals habitat partitioning in massive Porites on Guam, Micronesia.

Karim D Primov, David R Burdick, Sarah Lemer, Zac H Forsman, David J Combosch
Author Information
  1. Karim D Primov: University of Guam Marine Laboratory, UOG Station, Mangilao, GU, USA. kprimov1@gmail.com.
  2. David R Burdick: University of Guam Marine Laboratory, UOG Station, Mangilao, GU, USA.
  3. Sarah Lemer: University of Guam Marine Laboratory, UOG Station, Mangilao, GU, USA.
  4. Zac H Forsman: King Abdullah University of Science and Technology, 23955, Thuwal, Saudi Arabia.
  5. David J Combosch: University of Guam Marine Laboratory, UOG Station, Mangilao, GU, USA.

Abstract

Corals in marginal reef habitats generally exhibit less bleaching and associated mortality compared to nearby corals in more pristine reef environments. It is unclear, however, if these differences are due to environmental differences, including turbidity, or genomic differences between the coral hosts in these different environments. One particularly interesting case is in the coral genus Porites, which contains numerous morphologically similar massive Porites species inhabiting a wide range of reef habitats, from turbid river deltas and stagnant back reefs to high-energy fore reefs. Here, we generate ddRAD data for 172 Porites corals from river delta and adjacent (<0.5 km) fore reef populations on Guam to assess the extent of genetic differentiation among massive Porites corals in these two contrasting environments and throughout the island. Phylogenetic and population genomic analyses consistently identify seven different clades of massive Porites, with the two largest clades predominantly inhabiting either river deltas or fore reefs, respectively. No population structure was detected in the two largest clades, and Cladocopium was the dominant symbiont genus in all clades and environments. The perceived bleaching resilience of corals in marginal reefs may therefore be attributed to interspecific differences between morphologically similar species, in addition to potentially mediating environmental differences. Marginal reef environments may therefore not provide a suitable refuge for many reef corals in a heating world, but instead host additional cryptic coral diversity.

Keywords

References

  1. Mol Ecol. 2019 Nov;28(21):4737-4754 [PMID: 31550391]
  2. PLoS One. 2012;7(5):e37135 [PMID: 22675423]
  3. Mol Ecol. 2010 Nov;19(21):4661-77 [PMID: 20887361]
  4. Mol Ecol. 2020 Nov;29(22):4265-4273 [PMID: 33001521]
  5. Am Nat. 2003 Oct;162(4 Suppl):S51-62 [PMID: 14583857]
  6. Curr Biol. 2018 Aug 20;28(16):2570-2580.e6 [PMID: 30100341]
  7. Mol Ecol. 2012 May;21(9):2224-38 [PMID: 22439812]
  8. Nat Ecol Evol. 2024 Apr;8(4):622-636 [PMID: 38351091]
  9. G3 (Bethesda). 2011 Aug;1(3):171-82 [PMID: 22384329]
  10. PeerJ. 2016 May 05;4:e1970 [PMID: 27168979]
  11. Evol Appl. 2022 Jul 07;16(2):293-310 [PMID: 36793689]
  12. Curr Biol. 2021 Jun 7;31(11):2286-2298.e8 [PMID: 33811819]
  13. PeerJ. 2015 Feb 03;3:e751 [PMID: 25674364]
  14. Nat Microbiol. 2019 Dec;4(12):2090-2100 [PMID: 31548681]
  15. Glob Chang Biol. 2019 Mar;25(3):1016-1031 [PMID: 30552831]
  16. Mol Phylogenet Evol. 2017 Jun;111:132-148 [PMID: 28366817]
  17. Sci Rep. 2021 Feb 9;11(1):3423 [PMID: 33564085]
  18. Sci Total Environ. 2020 Jun 25;723:138026 [PMID: 32213418]
  19. Genome Biol Evol. 2021 Dec 1;13(12): [PMID: 34878117]
  20. J Hered. 2013 Jul-Aug;104(4):532-46 [PMID: 23580757]
  21. Mol Ecol. 2015 Jan;24(1):70-82 [PMID: 25407355]
  22. Sci Rep. 2016 Feb 15;6:20717 [PMID: 26876092]
  23. Nat Commun. 2023 Jul 28;14(1):4475 [PMID: 37507378]
  24. Ecol Evol. 2012 Dec;2(12):3195-213 [PMID: 23301184]
  25. Sci Rep. 2019 Mar 5;9(1):3484 [PMID: 30837608]
  26. Front Microbiol. 2018 Nov 01;9:2621 [PMID: 30443242]
  27. BMC Evol Biol. 2009 Feb 24;9:45 [PMID: 19239678]
  28. Mol Ecol. 2013 Jun;22(11):3124-40 [PMID: 23701397]
  29. Proc Natl Acad Sci U S A. 2013 Mar 5;110(10):3961-6 [PMID: 23359716]
  30. Glob Chang Biol. 2020 Mar;26(3):1367-1373 [PMID: 31912964]
  31. Mar Pollut Bull. 2022 Aug;181:113816 [PMID: 35717876]
  32. PLoS One. 2012;7(4):e35269 [PMID: 22529998]
  33. Mar Pollut Bull. 2019 Jul;144:196-204 [PMID: 31179988]
  34. Commun Biol. 2022 Dec 21;5(1):1394 [PMID: 36543929]
  35. J Phycol. 2023 Aug;59(4):698-711 [PMID: 37126002]
  36. Mol Ecol. 2014 Jul;23(13):3330-40 [PMID: 24863571]
  37. Nat Methods. 2012 Mar 04;9(4):357-9 [PMID: 22388286]
  38. Proc Biol Sci. 2013 Dec 11;281(1776):20131580 [PMID: 24335977]
  39. Nature. 2004 Feb 26;427(6977):832-5 [PMID: 14985760]
  40. Sci Adv. 2023 Aug 11;9(32):eadf0954 [PMID: 37566650]
  41. Mol Biol Evol. 2020 May 1;37(5):1530-1534 [PMID: 32011700]
  42. PLoS One. 2024 Feb 15;19(2):e0290505 [PMID: 38359055]
  43. Mol Phylogenet Evol. 2010 Dec;57(3):1072-90 [PMID: 20863897]
  44. Ecology. 2021 Jun;102(6):e03324 [PMID: 33690896]
  45. Sci Adv. 2017 Feb 15;3(2):e1602373 [PMID: 28246645]
  46. Mol Phylogenet Evol. 2021 Aug;161:107173 [PMID: 33813021]
  47. Proc Natl Acad Sci U S A. 2008 Jul 29;105(30):10444-9 [PMID: 18645181]
  48. Mol Ecol Resour. 2020 Jul;20(4):1126-1131 [PMID: 32061017]
  49. BMC Bioinformatics. 2014 Nov 25;15:356 [PMID: 25420514]
  50. PeerJ. 2016 Aug 18;4:e2330 [PMID: 27602294]
  51. Glob Chang Biol. 2018 Jul;24(7):2755-2757 [PMID: 29582529]
  52. Mol Ecol. 2017 Nov;26(21):5923-5938 [PMID: 28872211]
  53. Ecol Evol. 2012 Oct;2(10):2474-84 [PMID: 23145333]
  54. Mol Ecol. 2013 Aug;22(16):4335-4348 [PMID: 23906315]
  55. PeerJ. 2020 Feb 18;8:e8550 [PMID: 32110487]
  56. Mol Ecol. 2021 Jul;30(14):3468-3484 [PMID: 33894013]
  57. Sci Rep. 2020 Oct 12;10(1):16995 [PMID: 33046719]
  58. Mar Environ Res. 2019 May;147:138-148 [PMID: 31097215]
  59. J Environ Manage. 2020 Aug 15;268:110666 [PMID: 32510431]
  60. Proc Biol Sci. 2021 Oct 13;288(1960):20210678 [PMID: 34641729]

Grants

  1. OIA:1457769/NSF
  2. OIA:1457769/NSF
  3. OIA:1457769/NSF
  4. OIA:1457769/NSF
  5. P16AC01681/NOAA Pacific Marine Environmental Laboratory
  6. P16AC01681/NOAA Pacific Marine Environmental Laboratory
  7. P16AC01681/NOAA Pacific Marine Environmental Laboratory
  8. P16AC01681/NOAA Pacific Marine Environmental Laboratory
  9. P21AC12027/National Park Service
  10. P21AC12027/National Park Service
  11. P21AC12027/National Park Service
  12. P21AC12027/National Park Service

MeSH Term

Animals
Anthozoa
Ecosystem
Coral Reefs
Phylogeny
Guam
Genomics
Micronesia

Word Cloud

Created with Highcharts 10.0.0PoritesreefcoralsenvironmentsdifferencesmassiveriverreefscladescoraldeltasGuamtwomarginalhabitatsbleachingenvironmentalgenomicdifferentgenusmorphologicallysimilarspeciesinhabitingforeddRADdatapopulationlargestmaythereforeMarginalCoralsgenerallyexhibitlessassociatedmortalitycomparednearbypristineunclearhoweverdueincludingturbidityhostsOneparticularlyinterestingcasecontainsnumerouswiderangeturbidstagnantbackhigh-energygenerate172deltaadjacent<05km forepopulationsassessextentgeneticdifferentiationamongcontrastingthroughoutislandPhylogeneticanalysesconsistently identifysevenpredominantlyeitherrespectivelystructuredetectedCladocopiumdominantsymbiontperceivedresilienceattributedinterspecificadditionpotentiallymediatingprovidesuitablerefugemanyheatingworldinsteadhostadditionalcrypticdiversityGenomicrevealshabitatpartitioningMicronesiaCoralMassivePhylogenomicsPopulationgenomics

Similar Articles

Cited By

No available data.