Microbial drinking water monitoring now and in the future.

Thomas Pluym, Fien Waegenaar, Bart De Gusseme, Nico Boon
Author Information
  1. Thomas Pluym: Center for Microbial Ecology and Technology (CMET), Department of Biotechnology, Ghent University, Ghent, Belgium. ORCID
  2. Fien Waegenaar: Center for Microbial Ecology and Technology (CMET), Department of Biotechnology, Ghent University, Ghent, Belgium.
  3. Bart De Gusseme: Center for Microbial Ecology and Technology (CMET), Department of Biotechnology, Ghent University, Ghent, Belgium.
  4. Nico Boon: Center for Microbial Ecology and Technology (CMET), Department of Biotechnology, Ghent University, Ghent, Belgium.

Abstract

Over time, humanity has addressed microbial water contamination in various ways. Historically, individuals resorted to producing beer to combat the issue. Fast forward to the 19th century, and we witnessed a scientific approach by Robert Koch. His groundbreaking gelatine plating method aimed to identify and quantify bacteria, with a proposed limit of 100 colony-forming units per millilitre (CFU/mL) to avoid Cholera outbreaks. Despite considerable advancements in plating techniques through experimentation with media compositions and growth temperatures, the reliance on a century-old method for water safety remains the state-of-the-art. Even though most countries succeed in producing qualitative water at the end of the production centres, it is difficult to control, and guarantee, the same quality during distribution. Rather than focusing solely on specific sampling points, we propose a holistic examination of the entire water network to ensure comprehensive safety. Current practices leave room for uncertainties, especially given the low concentrations of pathogens. Innovative methods like flow cytometry and flow cytometric fingerprinting offer the ability to detect changes in the microbiome of drinking water. Additionally, molecular techniques and emerging sequencing technologies, such as third-generation sequencing (MinION), mark a significant leap forward, enhancing detection limits and emphasizing the identification of unwanted genes rather than the unwanted bacteria/microorganisms itself. Over the last decades, there has been the realization that the drinking water distribution networks are complex ecosystems that, beside bacteria, comprise of viruses, protozoans and even isopods. Sequencing techniques to find eukaryotic DNA are necessary to monitor the entire microbiome of the drinking water distribution network. Or will artificial intelligence, big data and machine learning prove to be the way to go for (microbial) drinking water monitoring? In essence, it is time to transcend century-old practices and embrace modern technologies to ensure the safety of our drinking water from production to consumption.

References

  1. Environ Res. 2021 Oct;201:111602 [PMID: 34214559]
  2. J Environ Health. 2002 Jul-Aug;65(1):16-23, 28; quiz 31-2 [PMID: 12148323]
  3. J Microbiol Methods. 2003 Dec;55(3):585-97 [PMID: 14607402]
  4. PeerJ. 2015 Mar 31;3:e862 [PMID: 25861554]
  5. Water Res. 2008 Aug;42(14):4010-8 [PMID: 18694583]
  6. Curr Microbiol. 2018 Oct;75(10):1282-1289 [PMID: 29980812]
  7. Water Res. 2021 Sep 15;203:117543 [PMID: 34433109]
  8. Water Res. 2023 Aug 15;242:120269 [PMID: 37393812]
  9. Appl Environ Microbiol. 1985 Jan;49(1):1-7 [PMID: 3883894]
  10. Appl Environ Microbiol. 1988 Jun;54(6):1595-601 [PMID: 3046490]
  11. Water Res. 2008 Jan;42(1-2):269-77 [PMID: 17659762]
  12. Appl Environ Microbiol. 1998 Aug;64(8):3079-83 [PMID: 9687478]
  13. J Environ Health Sci Eng. 2015 Mar 20;13:24 [PMID: 25878795]
  14. Sci Total Environ. 2024 Feb 20;912:169138 [PMID: 38070556]
  15. Int J Food Microbiol. 2004 May 1;92(3):265-74 [PMID: 15145585]
  16. Water Res. 2024 Jan 1;248:120858 [PMID: 37988808]
  17. Can J Microbiol. 2008 Jul;54(7):509-24 [PMID: 18641697]
  18. Water Res. 2021 Sep 1;202:117387 [PMID: 34243050]
  19. Int J Hyg Environ Health. 2016 Oct;219(7 Pt A):577-584 [PMID: 26809219]
  20. Int J Environ Res Public Health. 2013 Mar 01;10(3):845-55 [PMID: 23455399]
  21. Water Res. 2008 Jul;42(13):3489-97 [PMID: 18534656]
  22. J Microbiol Methods. 2016 Dec;131:172-180 [PMID: 27810378]
  23. Water Res. 2024 May 1;254:121374 [PMID: 38422696]
  24. J Water Health. 2011 Dec;9(4):799-812 [PMID: 22048438]
  25. Nat Rev Microbiol. 2020 Apr;18(4):241-256 [PMID: 32055027]
  26. Appl Environ Microbiol. 1990 Feb;56(2):366-9 [PMID: 2407184]
  27. Anal Bioanal Chem. 2010 Jun;397(3):1083-95 [PMID: 20352197]
  28. Appl Environ Microbiol. 1988 Dec;54(12):3023-33 [PMID: 3223766]
  29. Int J Infect Dis. 2010 Sep;14(9):e744-51 [PMID: 20413340]
  30. J Water Health. 2004 Sep;2(3):201-14 [PMID: 15497816]
  31. Cytometry A. 2012 Jun;81(6):508-16 [PMID: 22489027]
  32. Environ Sci Technol. 2010 Nov 15;44(22):8561-6 [PMID: 20968297]
  33. Water Res. 2017 Apr 15;113:191-206 [PMID: 28214393]
  34. Water Res. 2020 Mar 1;170:115353 [PMID: 31881501]
  35. Water Res. 2023 Aug 15;242:120172 [PMID: 37307683]
  36. Cureus. 2023 Nov 24;15(11):e49344 [PMID: 38146561]
  37. J Appl Microbiol. 2000 Mar;88(3):404-13 [PMID: 10747220]
  38. Water Res. 2019 May 1;154:377-386 [PMID: 30822598]
  39. Microbiology (Reading). 1994 Jun;140 ( Pt 6):1253-9 [PMID: 8081490]
  40. Appl Environ Microbiol. 2011 May;77(10):3360-7 [PMID: 21441332]
  41. Microb Biotechnol. 2024 Feb;17(2):e14417 [PMID: 38380960]
  42. Int J Food Microbiol. 2004 May 1;92(3):297-306 [PMID: 15145588]
  43. Water Res. 2014 Nov 1;64:309-320 [PMID: 25086698]

Grants

  1. 1S02022N/Fonds Wetenschappelijk Onderzoek
  2. 1S26823N/Fonds Wetenschappelijk Onderzoek
  3. S006221N/Fonds Wetenschappelijk Onderzoek

MeSH Term

Drinking Water
Bacteria
Humans
Water Microbiology
Environmental Monitoring

Chemicals

Drinking Water

Word Cloud

Created with Highcharts 10.0.0waterdrinkingtechniquessafetydistributiontimemicrobialproducingforwardplatingmethodbacteriacentury-oldproductionentirenetworkensurepracticesflowmicrobiomesequencingtechnologiesunwantedhumanityaddressedcontaminationvariouswaysHistoricallyindividualsresortedbeercombatissueFast19thcenturywitnessedscientificapproachRobertKochgroundbreakinggelatineaimedidentifyquantifyproposedlimit100colony-formingunitspermillilitreCFU/mLavoidCholeraoutbreaksDespiteconsiderableadvancementsexperimentationmediacompositionsgrowthtemperaturesrelianceremainsstate-of-the-artEventhoughcountriessucceedqualitativeendcentresdifficultcontrolguaranteequalityRatherfocusingsolelyspecificsamplingpointsproposeholisticexaminationcomprehensiveCurrentleaveroomuncertaintiesespeciallygivenlowconcentrationspathogensInnovativemethodslikecytometrycytometricfingerprintingofferabilitydetectchangesAdditionallymolecularemergingthird-generationMinIONmarksignificantleapenhancingdetectionlimitsemphasizingidentificationgenesratherbacteria/microorganismslastdecadesrealizationnetworkscomplexecosystemsbesidecomprisevirusesprotozoansevenisopodsSequencingfindeukaryoticDNAnecessarymonitorwillartificialintelligencebigdatamachinelearningprovewaygomonitoring?essencetranscendembracemodernconsumptionMicrobialmonitoringnowfuture

Similar Articles

Cited By