Genome-wide identification and functional analysis of mRNA mA writers in soybean under abiotic stress.

Peng Liu, Huijie Liu, Jie Zhao, Tengfeng Yang, Sichao Guo, Luo Chang, Tianyun Xiao, Anjie Xu, Xiaoye Liu, Changhua Zhu, Lijun Gan, Mingjia Chen
Author Information
  1. Peng Liu: College of Life Sciences, Nanjing Agricultural University, Nanjing, China.
  2. Huijie Liu: College of Life Sciences, Nanjing Agricultural University, Nanjing, China.
  3. Jie Zhao: College of Life Sciences, Nanjing Agricultural University, Nanjing, China.
  4. Tengfeng Yang: College of Life Sciences, Nanjing Agricultural University, Nanjing, China.
  5. Sichao Guo: College of Life Sciences, Nanjing Agricultural University, Nanjing, China.
  6. Luo Chang: College of Life Sciences, Nanjing Agricultural University, Nanjing, China.
  7. Tianyun Xiao: College of Life Sciences, Nanjing Agricultural University, Nanjing, China.
  8. Anjie Xu: College of Life Sciences, Nanjing Agricultural University, Nanjing, China.
  9. Xiaoye Liu: Department of Criminal Science and Technology, Nanjing Police University, Nanjing, China.
  10. Changhua Zhu: College of Life Sciences, Nanjing Agricultural University, Nanjing, China.
  11. Lijun Gan: College of Life Sciences, Nanjing Agricultural University, Nanjing, China.
  12. Mingjia Chen: College of Life Sciences, Nanjing Agricultural University, Nanjing, China.

Abstract

N-methyladenosine (mA), a well-characterized RNA modification, is involved in regulating multiple biological processes; however, genome-wide identification and functional characterization of the mA modification in legume plants, including soybean ( (L.) Merr.), remains lacking. In this study, we utilized bioinformatics tools to perform comprehensive analyses of molecular writer candidates associated with the RNA mA modification in soybean, characterizing their conserved domains, motifs, gene structures, promoters, and spatial expression patterns. Thirteen mA writer complex genes in soybean were identified, which were assigned to four families: MT-A70, WTAP, VIR, and HAKAI. It also can be identified that multiple cis elements in the promoters of these genes, which were classified into five distinct groups, including elements responsive to light, phytohormone regulation, environmental stress, development, and others, suggesting that these genes may modulate various cellular and physiological processes in plants. Importantly, the enzymatic activities of two identified mA writers, GmMTA1 and GmMTA2, were confirmed . Furthermore, we analyzed the expression patterns of the s and s under different abiotic stresses, revealing their potential involvement in stress tolerance, especially in the response to alkalinity or darkness. Overexpressing and in soybean altered the tolerance of the plants to alkalinity and long-term darkness, further confirming their effect on the stress response. Collectively, our findings identified the RNA mA writer candidates in leguminous plants and highlighted the potential roles of s and s in the response to abiotic stress in soybean.

Keywords

References

  1. Plant Physiol. 2022 Mar 28;188(4):1900-1916 [PMID: 34718775]
  2. Mol Plant. 2020 Aug 3;13(8):1194-1202 [PMID: 32585190]
  3. Science. 2018 Sep 28;361(6409):1346-1349 [PMID: 30262497]
  4. Plant Cell. 2008 May;20(5):1278-88 [PMID: 18505803]
  5. Mol Plant. 2014 Dec;7(12):1776-87 [PMID: 25296857]
  6. Physiol Plant. 2022 May;174(3):e13709 [PMID: 35580210]
  7. BMC Genomics. 2012 Oct 10;13:544 [PMID: 23050870]
  8. Plant J. 2009 Jul;59(1):150-62 [PMID: 19309457]
  9. Plant Cell. 2018 Jul;30(7):1511-1522 [PMID: 29884623]
  10. Nat Commun. 2014 Aug 14;5:4636 [PMID: 25119965]
  11. New Phytol. 2022 May;234(4):1294-1314 [PMID: 35246985]
  12. Mol Hortic. 2021 Jun 16;1(1):5 [PMID: 37789484]
  13. Bioinformatics. 2007 Nov 1;23(21):2947-8 [PMID: 17846036]
  14. Mol Plant. 2023 May 1;16(5):794-797 [PMID: 36950735]
  15. Plant Sci. 2021 Mar;304:110801 [PMID: 33568300]
  16. Plant Cell. 2019 Mar;31(3):734-751 [PMID: 30787180]
  17. Dev Cell. 2016 Jul 25;38(2):186-200 [PMID: 27396363]
  18. Science. 2021 Oct;374(6563):65-71 [PMID: 34591638]
  19. Mol Cell. 2019 May 16;74(4):640-650 [PMID: 31100245]
  20. Annu Rev Plant Biol. 2020 Apr 29;71:403-433 [PMID: 32167791]
  21. Aquat Toxicol. 2017 Nov;192:127-135 [PMID: 28946066]
  22. Plant J. 2023 Aug;115(4):967-985 [PMID: 37158663]
  23. BMC Plant Biol. 2013 Oct 04;13:151 [PMID: 24093718]
  24. Ecotoxicol Environ Saf. 2021 Sep 1;220:112369 [PMID: 34090109]
  25. Cell Rep. 2018 Oct 30;25(5):1146-1157.e3 [PMID: 30380407]
  26. Plant Physiol. 2024 Mar 29;194(4):2663-2678 [PMID: 38084897]
  27. New Phytol. 2017 Jul;215(1):157-172 [PMID: 28503769]
  28. Plant Cell. 2023 Sep 27;35(10):3739-3756 [PMID: 37367221]
  29. Nucleic Acids Res. 2020 Nov 4;48(19):11083-11096 [PMID: 33035345]
  30. Plant Cell. 2020 Mar;32(3):722-739 [PMID: 31907295]
  31. Nat Rev Genet. 2016 Jun;17(6):365-72 [PMID: 27140282]
  32. Nucleic Acids Res. 2023 Aug 11;51(14):7451-7464 [PMID: 37334828]
  33. BMC Plant Biol. 2004 Jun 01;4:10 [PMID: 15171794]
  34. Hortic Res. 2023 May 04;10(6):uhad094 [PMID: 37350799]
  35. Int J Mol Sci. 2020 Apr 02;21(7): [PMID: 32252292]
  36. Annu Rev Plant Biol. 2019 Apr 29;70:347-376 [PMID: 30811218]
  37. Trends Genet. 2013 Feb;29(2):108-15 [PMID: 23218460]
  38. Nucleic Acids Res. 2017 Jan 4;45(D1):D1082-D1089 [PMID: 27492285]
  39. Plant J. 2021 Jun;106(6):1759-1775 [PMID: 33843075]
  40. Nat Commun. 2024 Jan 27;15(1):798 [PMID: 38280892]
  41. Nucleic Acids Res. 2023 Jul 5;51(W1):W587-W592 [PMID: 37144476]
  42. Nature. 2016 May 25;534(7608):575-8 [PMID: 27281194]
  43. Mol Biol Evol. 2021 Jun 25;38(7):3022-3027 [PMID: 33892491]
  44. Methods. 2001 Dec;25(4):402-8 [PMID: 11846609]
  45. Plant Biotechnol J. 2022 Aug;20(8):1447-1455 [PMID: 35178842]
  46. Plant Physiol Biochem. 2016 Dec;109:248-261 [PMID: 27756006]
  47. Front Plant Sci. 2016 Jun 03;7:760 [PMID: 27375634]
  48. Cancer Lett. 2021 Oct 10;518:256-265 [PMID: 34339799]
  49. Plant Physiol. 2016 Jun;171(2):799-809 [PMID: 27208239]
  50. Plant J. 1998 Nov;16(3):393-401 [PMID: 9881160]
  51. Cell. 2017 Jun 15;169(7):1187-1200 [PMID: 28622506]
  52. Nat Rev Genet. 2024 Feb;25(2):104-122 [PMID: 37714958]
  53. Plant Physiol. 2004 Apr;134(4):1283-92 [PMID: 15047892]

Word Cloud

Created with Highcharts 10.0.0mAsoybeanstressRNAplantsidentifiedsabioticmodificationwritergenesresponsemultipleprocessesidentificationfunctionalincludingcandidatespromotersexpressionpatternselementswriterspotentialtolerancealkalinitydarknessN-methyladenosinewell-characterizedinvolvedregulatingbiologicalhowevergenome-widecharacterizationlegumeLMerrremainslackingstudyutilizedbioinformaticstoolsperformcomprehensiveanalysesmolecularassociatedcharacterizingconserveddomainsmotifsgenestructuresspatialThirteencomplexassignedfourfamilies:MT-A70WTAPVIRHAKAIalsocancisclassifiedfivedistinctgroupsresponsivelightphytohormoneregulationenvironmentaldevelopmentotherssuggestingmaymodulatevariouscellularphysiologicalImportantlyenzymaticactivitiestwoGmMTA1GmMTA2confirmedFurthermoreanalyzeddifferentstressesrevealinginvolvementespeciallyOverexpressingalteredlong-termconfirmingeffectCollectivelyfindingsleguminoushighlightedrolesGenome-wideanalysismRNAMTAMTBmethylationm6A

Similar Articles

Cited By