Superconducting Quantum Simulation for Many-Body Physics beyond Equilibrium.

Yunyan Yao, Liang Xiang
Author Information
  1. Yunyan Yao: ZJU-Hangzhou Global Scientific and Technological Innovation Center, Department of Physics, Zhejiang University, Hangzhou 311200, China. ORCID
  2. Liang Xiang: ZJU-Hangzhou Global Scientific and Technological Innovation Center, Department of Physics, Zhejiang University, Hangzhou 311200, China. ORCID

Abstract

Quantum computing is an exciting field that uses quantum principles, such as quantum superposition and entanglement, to tackle complex computational problems. Superconducting quantum circuits, based on Josephson junctions, is one of the most promising physical realizations to achieve the long-term goal of building fault-tolerant quantum computers. The past decade has witnessed the rapid development of this field, where many intermediate-scale multi-qubit experiments emerged to simulate nonequilibrium quantum many-body dynamics that are challenging for classical computers. Here, we review the basic concepts of superconducting quantum simulation and their recent experimental progress in exploring exotic nonequilibrium quantum phenomena emerging in strongly interacting many-body systems, e.g., many-body localization, quantum many-body scars, and discrete time crystals. We further discuss the prospects of quantum simulation experiments to truly solve open problems in nonequilibrium many-body systems.

Keywords

References

  1. Phys Rev Lett. 2019 Oct 4;123(14):147201 [PMID: 31702215]
  2. Nature. 2017 Mar 8;543(7644):217-220 [PMID: 28277505]
  3. Science. 2024 Apr 5;384(6691):48-53 [PMID: 38574139]
  4. Rep Prog Phys. 2017 Oct;80(10):106001 [PMID: 28682303]
  5. Phys Rev Lett. 2017 Aug 18;119(7):075702 [PMID: 28949665]
  6. Phys Rev A. 1991 Feb 15;43(4):2046-2049 [PMID: 9905246]
  7. Nature. 2017 Mar 8;543(7644):221-225 [PMID: 28277511]
  8. Nature. 2022 Jan;601(7894):531-536 [PMID: 34847568]
  9. Science. 2019 Aug 9;365(6453):574-577 [PMID: 31395779]
  10. Phys Rev Lett. 2012 Feb 3;108(5):057002 [PMID: 22400953]
  11. Phys Rev Lett. 2019 Nov 1;123(18):180601 [PMID: 31763899]
  12. Science. 2015 Aug 21;349(6250):842-5 [PMID: 26229112]
  13. Nature. 2019 Oct;574(7779):505-510 [PMID: 31645734]
  14. Nature. 2024 May;629(8012):561-566 [PMID: 38658761]
  15. Phys Rev Lett. 2018 Mar 16;120(11):110603 [PMID: 29601754]
  16. Phys Rev Lett. 2013 Feb 22;110(8):084101 [PMID: 23473149]
  17. Science. 2004 Nov 19;306(5700):1330-6 [PMID: 15550661]
  18. Nat Commun. 2014 Oct 14;5:5184 [PMID: 25312575]
  19. Phys Rev Lett. 2012 Oct 19;109(16):160401 [PMID: 23215056]
  20. Phys Rev Lett. 2016 Apr 8;116(14):140401 [PMID: 27104685]
  21. Nature. 2023 Jun;618(7964):264-269 [PMID: 37169834]
  22. Phys Rev Lett. 2023 Aug 25;131(8):080401 [PMID: 37683167]
  23. Phys Rev Lett. 2021 Oct 29;127(18):180501 [PMID: 34767433]
  24. Phys Rev Lett. 2021 Dec 10;127(24):240502 [PMID: 34951777]
  25. Nature. 2022 May;605(7911):669-674 [PMID: 35614249]
  26. Nature. 2008 Jun 19;453(7198):1031-42 [PMID: 18563154]
  27. Phys Rev Lett. 2016 Nov 18;117(21):210505 [PMID: 27911561]
  28. Science. 2021 Mar 26;371(6536):1355-1359 [PMID: 33632894]
  29. Phys Rev Lett. 2016 Aug 26;117(9):090402 [PMID: 27610834]
  30. Science. 2006 Sep 8;313(5792):1423-5 [PMID: 16960003]
  31. Phys Rev Lett. 2017 Jun 30;118(26):266601 [PMID: 28707931]
  32. Phys Rev Lett. 2023 Mar 24;130(12):120403 [PMID: 37027857]
  33. Nat Commun. 2023 Jun 24;14(1):3778 [PMID: 37355694]
  34. Nat Commun. 2017 Feb 15;8: [PMID: 28198466]
  35. Science. 2019 Aug 9;365(6453):570-574 [PMID: 31395778]
  36. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1994 Aug;50(2):888-901 [PMID: 9962049]
  37. Phys Rev Lett. 2017 Oct 13;119(15):150602 [PMID: 29077452]
  38. Phys Rev Lett. 2018 Feb 2;120(5):050507 [PMID: 29481152]
  39. Phys Rev Lett. 2019 May 3;122(17):170403 [PMID: 31107070]
  40. Nature. 2009 Sep 24;461(7263):504-6 [PMID: 19779447]
  41. Phys Rev Lett. 2018 May 4;120(18):180603 [PMID: 29775343]
  42. Rep Prog Phys. 2022 Jul 01;85(8): [PMID: 35617909]
  43. Nature. 2023 Feb;614(7949):676-681 [PMID: 36813892]
  44. Sci Rep. 2014 Dec 15;4:7482 [PMID: 25500735]
  45. Phys Rev Lett. 2016 Jun 24;116(25):250401 [PMID: 27391704]
  46. Science. 2021 Dec 03;374(6572):1237-1241 [PMID: 34855491]
  47. Phys Rev Lett. 2011 Mar 11;106(10):100401 [PMID: 21469772]
  48. Nature. 2010 Sep 30;467(7315):570-3 [PMID: 20882012]
  49. Science. 2016 Aug 19;353(6301):794-800 [PMID: 27540168]
  50. Sci Adv. 2021 Nov 19;7(47):eabi8009 [PMID: 34788090]
  51. Phys Rev Lett. 2015 Feb 20;114(7):070502 [PMID: 25763944]
  52. Phys Rev E. 2021 Nov;104(5-1):054105 [PMID: 34942719]
  53. Science. 2021 May 28;372(6545):948-952 [PMID: 33958483]
  54. Nature. 2022 Jul;607(7919):468-473 [PMID: 35859194]
  55. Sci Adv. 2023 Dec 22;9(51):eadj3822 [PMID: 38134272]
  56. Phys Rev Lett. 2019 Feb 1;122(4):040606 [PMID: 30768332]
  57. Science. 2021 Jun 11;372(6547):1192-1196 [PMID: 34112691]
  58. Phys Rev Lett. 2013 Aug 23;111(8):080502 [PMID: 24010421]
  59. Science. 2016 Jun 24;352(6293):1547-52 [PMID: 27339981]
  60. Nature. 2019 Sep;573(7774):385-389 [PMID: 31485075]
  61. Phys Rev Lett. 2015 Jun 26;114(25):251603 [PMID: 26197119]
  62. Nature. 2020 Sep;585(7825):368-371 [PMID: 32939069]
  63. Sci Adv. 2022 Mar 4;8(9):eabm7652 [PMID: 35235347]
  64. Phys Rev Lett. 2018 Oct 5;121(14):140601 [PMID: 30339434]
  65. Phys Rev Lett. 2017 Jan 20;118(3):030401 [PMID: 28157355]
  66. Nat Commun. 2021 Jul 23;12(1):4490 [PMID: 34301932]
  67. Nature. 2008 Apr 17;452(7189):854-8 [PMID: 18421349]
  68. Science. 2024 Mar 22;383(6689):1332-1337 [PMID: 38513021]
  69. Rep Prog Phys. 2019 Jan;82(1):016001 [PMID: 30421725]
  70. Phys Rev Lett. 2018 Aug 31;121(9):093001 [PMID: 30230902]
  71. Phys Rev Lett. 2003 Feb 28;90(8):087003 [PMID: 12633452]
  72. Nature. 2021 Nov;599(7885):393-398 [PMID: 34789908]
  73. Phys Rev Lett. 2006 Aug 4;97(5):050502 [PMID: 17026085]
  74. Phys Rev Lett. 2009 Mar 6;102(9):090502 [PMID: 19392502]
  75. Phys Rev Lett. 2021 Aug 27;127(9):090602 [PMID: 34506175]
  76. Nature. 2017 Nov 29;551(7682):579-584 [PMID: 29189778]
  77. Phys Rev Lett. 2018 May 25;120(21):210603 [PMID: 29883152]
  78. Phys Rev Lett. 2011 May 6;106(18):180504 [PMID: 21635076]
  79. Science. 2015 Sep 11;349(6253):1199-202 [PMID: 26359397]
  80. Phys Rev Lett. 2013 Aug 16;111(7):070402 [PMID: 23992051]
  81. Science. 2019 Apr 19;364(6437):256-260 [PMID: 31000657]
  82. Phys Rev Lett. 2017 Dec 29;119(26):260401 [PMID: 29328706]
  83. Nature. 2023 Jun;618(7965):500-505 [PMID: 37316724]
  84. Phys Rev Lett. 2012 Aug 24;109(8):080505 [PMID: 23002731]
  85. Science. 2017 Sep 8;357(6355):995-1001 [PMID: 28883070]
  86. Rep Prog Phys. 2018 Jul;81(7):074001 [PMID: 29504942]
  87. Sci Bull (Beijing). 2023 May 15;68(9):906-912 [PMID: 37085397]
  88. Phys Rev Lett. 2021 Jul 9;127(2):020602 [PMID: 34296924]
  89. Science. 2017 Dec 1;358(6367):1175-1179 [PMID: 29191906]

Grants

  1. 12304559/National Natural Science Foundation of China

Word Cloud

Created with Highcharts 10.0.0quantummany-bodynonequilibriumsimulationQuantumfieldproblemsSuperconductingcomputersexperimentssuperconductingsystemslocalizationscarsdiscretetimecomputingexcitingusesprinciplessuperpositionentanglementtacklecomplexcomputationalcircuitsbasedJosephsonjunctionsonepromisingphysicalrealizationsachievelong-termgoalbuildingfault-tolerantpastdecadewitnessedrapiddevelopmentmanyintermediate-scalemulti-qubitemergedsimulatedynamicschallengingclassicalreviewbasicconceptsrecentexperimentalprogressexploringexoticphenomenaemergingstronglyinteractingegcrystalsdiscussprospectstrulysolveopenSimulationMany-BodyPhysicsbeyondEquilibriumcrystal

Similar Articles

Cited By