Marine-Derived Lipases for Enhancing Enrichment of Very-Long-Chain Polyunsaturated Fatty Acids with Reference to Omega-3 Fatty Acids.

Mahejbin Karia, Mona Kaspal, Mariam Alhattab, Munish Puri
Author Information
  1. Mahejbin Karia: Bioprocessing Laboratory, Medical Biotechnology, College of Medicine and Public Health, Flinders University, Bedford Park, Adelaide 5042, Australia.
  2. Mona Kaspal: Bioprocessing Laboratory, Medical Biotechnology, College of Medicine and Public Health, Flinders University, Bedford Park, Adelaide 5042, Australia.
  3. Mariam Alhattab: Bioprocessing Laboratory, Medical Biotechnology, College of Medicine and Public Health, Flinders University, Bedford Park, Adelaide 5042, Australia.
  4. Munish Puri: Bioprocessing Laboratory, Medical Biotechnology, College of Medicine and Public Health, Flinders University, Bedford Park, Adelaide 5042, Australia. ORCID

Abstract

Omega-3 fatty acids are essential fatty acids that are not synthesised by the human body and have been linked with the prevention of chronic illnesses such as cardiovascular and neurodegenerative diseases. However, the current dietary habits of the majority of the population include lower omega-3 content compared to omega-6, which does not promote good health. To overcome this, pharmaceutical and nutraceutical companies aim to produce omega-3-fortified foods. For this purpose, various approaches have been employed to obtain omega-3 concentrates from sources such as fish and algal oil with higher amounts of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Among these techniques, enzymatic enrichment using lipase enzymes has gained tremendous interest as it is low in capital cost and simple in operation. Microorganism-derived lipases are preferred as they are easily produced due to their higher growth rate, and they hold the ability to be manipulated using genetic modification. This review aims to highlight the recent studies that have been carried out using marine lipases for the enrichment of omega-3, to provide insight into future directions. Overall, the covalent bond-based lipase immobilization to various support materials appears most promising; however, greener and less expensive options need to be strengthened.

Keywords

References

  1. Enzyme Microb Technol. 2000 Jun 1;26(9-10):657-663 [PMID: 10862870]
  2. Appl Biochem Biotechnol. 2021 Feb;193(2):430-445 [PMID: 33025565]
  3. Int J Mol Sci. 2023 May 18;24(10): [PMID: 37240270]
  4. Eur J Clin Nutr. 2007 Oct;61(10):1201-6 [PMID: 17268413]
  5. Microorganisms. 2023 Feb 17;11(2): [PMID: 36838475]
  6. Lipids. 1967 Nov;2(6):489-93 [PMID: 17805793]
  7. Biotechnol Adv. 2010 Jul-Aug;28(4):436-50 [PMID: 20172021]
  8. Food Chem. 2023 Jan 30;400:134115 [PMID: 36087482]
  9. Appl Biochem Biotechnol. 2001 Sep;95(3):221-55 [PMID: 11732718]
  10. Biomed Res Int. 2013;2013:329121 [PMID: 24106701]
  11. Annu Rev Food Sci Technol. 2018 Mar 25;9:345-381 [PMID: 29350557]
  12. J Am Chem Soc. 2013 Aug 28;135(34):12480-96 [PMID: 23930719]
  13. J Agric Food Chem. 2007 Sep 19;55(19):7802-9 [PMID: 17715898]
  14. 3 Biotech. 2021 Nov;11(11):461 [PMID: 34692369]
  15. Nutr Rev. 2004 Nov;62(11):414-26 [PMID: 15622714]
  16. Appl Microbiol Biotechnol. 2019 Sep;103(18):7399-7423 [PMID: 31375880]
  17. Front Microbiol. 2023 Nov 07;14:1280296 [PMID: 38029217]
  18. Front Microbiol. 2018 Oct 23;9:2377 [PMID: 30405541]
  19. 3 Biotech. 2021 Nov;11(11):481 [PMID: 34790505]
  20. Nat Rev Neurosci. 2014 Dec;15(12):771-85 [PMID: 25387473]
  21. Trends Biotechnol. 2013 Apr;31(4):215-6 [PMID: 23410582]
  22. BMC Biotechnol. 2017 Nov 10;17(1):78 [PMID: 29126403]
  23. Appl Biochem Biotechnol. 2016 Apr;179(1):75-93 [PMID: 26754423]
  24. Mar Drugs. 2021 Jan 28;19(2): [PMID: 33525674]
  25. Molecules. 2023 Jan 09;28(2): [PMID: 36677730]
  26. Food Chem. 2021 Jun 1;346:128743 [PMID: 33419584]
  27. Biotechnol Bioeng. 1996 Mar 5;49(5):527-34 [PMID: 18623614]
  28. Front Microbiol. 2015 Oct 13;6:1102 [PMID: 26528256]
  29. ACS Omega. 2023 Jan 31;8(6):5184-5196 [PMID: 36816672]
  30. Biotechnol Adv. 2012 Nov-Dec;30(6):1733-45 [PMID: 22406165]
  31. Angew Chem Int Ed Engl. 1998 Jul 3;37(12):1608-1633 [PMID: 29711530]
  32. Langmuir. 2021 Nov 9;37(44):12919-12928 [PMID: 34699224]
  33. Mar Drugs. 2024 Feb 06;22(2): [PMID: 38393051]
  34. Biotechnol Adv. 2006 Mar-Apr;24(2):180-96 [PMID: 16288844]
  35. Front Microbiol. 2023 Apr 28;14:1142536 [PMID: 37187537]
  36. Mol Cell Biochem. 2004 Aug;263(1):217-25 [PMID: 27520680]
  37. Curr Opin Biotechnol. 2010 Dec;21(6):780-6 [PMID: 20956080]
  38. Microb Cell Fact. 2014 Jan 04;13:1 [PMID: 24387764]
  39. Int J Biol Macromol. 2024 Jun;270(Pt 1):132076 [PMID: 38705324]
  40. Nutrients. 2014 Nov 18;6(11):5184-223 [PMID: 25412153]
  41. Eukaryot Cell. 2012 Dec;11(12):1451-62 [PMID: 23042128]
  42. Biophys J. 2010 Oct 6;99(7):2225-34 [PMID: 20923657]
  43. N Biotechnol. 2011 Oct;28(6):627-38 [PMID: 21549226]
  44. Mycology. 2020 Mar 26;11(4):279-286 [PMID: 33329923]
  45. PLoS One. 2016 Mar 15;11(3):e0151370 [PMID: 26978518]
  46. Microorganisms. 2017 May 16;5(2): [PMID: 28509857]
  47. Food Chem. 2017 Aug 15;229:509-516 [PMID: 28372209]
  48. Chem Soc Rev. 2009 Feb;38(2):453-68 [PMID: 19169460]
  49. J Biotechnol. 2018 Aug 20;280:19-30 [PMID: 29852195]
  50. Bioengineered. 2014 Sep-Oct;5(5):305-18 [PMID: 25482232]
  51. Curr Opin Chem Biol. 2002 Apr;6(2):145-50 [PMID: 12038997]
  52. Nutrients. 2016 Jan 04;8(1): [PMID: 26742061]
  53. Front Bioeng Biotechnol. 2022 Mar 17;10:842797 [PMID: 35372289]
  54. Int J Biol Macromol. 2023 Mar 1;230:123136 [PMID: 36621739]
  55. Biotechnol Adv. 2019 Sep - Oct;37(5):746-770 [PMID: 30974154]
  56. Adv Biochem Eng Biotechnol. 2005;96:189-218 [PMID: 16566092]
  57. Prep Biochem Biotechnol. 2024 Mar 6;:1-16 [PMID: 38445829]
  58. Prostaglandins Leukot Essent Fatty Acids. 2018 Jan;128:26-40 [PMID: 29413359]
  59. Protein Expr Purif. 2014 Mar;95:13-21 [PMID: 24280168]
  60. Microb Cell Fact. 2020 Aug 26;19(1):169 [PMID: 32847584]
  61. Adv Nutr. 2012 Jan;3(1):1-7 [PMID: 22332096]
  62. Bioresour Technol. 2013 May;135:2-6 [PMID: 23419989]
  63. Environ Sci Technol. 2022 Dec 6;56(23):17206-17214 [PMID: 36409825]

MeSH Term

Lipase
Fatty Acids, Omega-3
Humans
Animals
Aquatic Organisms
Dietary Supplements
Fish Oils

Chemicals

Lipase
Fatty Acids, Omega-3
Fish Oils

Word Cloud

Created with Highcharts 10.0.0omega-3lipasefattyacidsenrichmentusingOmega-3varioushigheracidlipasesmarineimmobilizationFattyAcidsessentialsynthesisedhumanbodylinkedpreventionchronicillnessescardiovascularneurodegenerativediseasesHowevercurrentdietaryhabitsmajoritypopulationincludelowercontentcomparedomega-6promotegoodhealthovercomepharmaceuticalnutraceuticalcompaniesaimproduceomega-3-fortifiedfoodspurposeapproachesemployedobtainconcentratessourcesfishalgaloilamountseicosapentaenoicEPAdocosahexaenoicDHAAmongtechniquesenzymaticenzymesgainedtremendousinterestlowcapitalcostsimpleoperationMicroorganism-derivedpreferredeasilyproducedduegrowthrateholdabilitymanipulatedgeneticmodificationreviewaimshighlightrecentstudiescarriedprovideinsightfuturedirectionsOverallcovalentbond-basedsupportmaterialsappearspromisinghowevergreenerlessexpensiveoptionsneedstrengthenedMarine-DerivedLipasesEnhancingEnrichmentVery-Long-ChainPolyunsaturatedReferencepolyunsaturated

Similar Articles

Cited By