spp. in Domestic Ruminants, Evaluation of Antimicrobial Resistance Based on the One Health Approach-A Systematic Review and Meta-Analysis.

Juan Garc��a-D��ez, Dina Moura, Luca Grispoldi, Beniamino Cenci-Goga, S��nia Saraiva, Filipe Silva, Cristina Saraiva, Juan Ausina
Author Information
  1. Juan Garc��a-D��ez: Veterinary and Animal Research Centre (CECAV), University of Tr��s-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal. ORCID
  2. Dina Moura: Divis��o de Interven����o de Alimenta����o e Veterin��ria de Vila Real e Douro Sul, Dire����o de Servi��os de Alimenta����o e Veterin��ria da Regi��o Norte, Dire����o Geral de Alimenta����o e Veterin��ria, Lugar de Codessais, 5000 Vila Real, Portugal.
  3. Luca Grispoldi: Dipartamento di Medicina Veterinaria, Universit�� degli Studi di Perugia, 06126 Perugia, Italy. ORCID
  4. Beniamino Cenci-Goga: Dipartamento di Medicina Veterinaria, Universit�� degli Studi di Perugia, 06126 Perugia, Italy. ORCID
  5. S��nia Saraiva: Veterinary and Animal Research Centre (CECAV), University of Tr��s-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal.
  6. Filipe Silva: Veterinary and Animal Research Centre (CECAV), University of Tr��s-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal. ORCID
  7. Cristina Saraiva: Veterinary and Animal Research Centre (CECAV), University of Tr��s-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal. ORCID
  8. Juan Ausina: Social Psychology and Methodology Department, Universidad Aut��noma de Madrid, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain. ORCID

Abstract

spp. pose a global threat as a leading cause of foodborne illnesses, particularly prevalent in the European Union (EU), where it remains the second cause of foodborne outbreaks. The emergence of antimicrobial resistance (AMR) in spp. has become a critical concern, complicating treatment strategies and escalating the risk of severe infections. The study focuses on large and small ruminants, identifying a prevalence of spp. in slaughterhouses and revealing varied AMR rates across antimicrobial families throughout a meta-analysis. Also, comparison with AMR in human medicine was carried out by a systematic review. The results of the present meta-analysis displayed a prevalence of spp. in large and small ruminants at slaughterhouses of 8.01% (8.31%, cattle; 7.04%, goats; 6.12%, sheep). According to the AMR of spp., 20, 14, and 13 out of 62 antimicrobials studied were classified as low (<5%), high (>5% but <10%), and very high (>10%), respectively. spp. did not display AMR against aztreonam, mezlocillin, ertapenem, meropenem, cefoxitin, ceftazidime, levofloxacin, tilmicosin, linezolid, fosfomycin, furazolidone, quinupristin, trimethoprim and spectinomycin. In contrast, a prevalence of 100% of AMR has been described against ofloxacin, lincomycin, and cloxacillin. In the context of the main antibiotics used in the treatment of human salmonellosis, azithromycin was shown to have the highest resistance among spp. isolates from humans. Regarding cephalosporins, which are also used for the treatment of salmonellosis in humans, the prevalence of spp. resistance to this class of antibiotics was similar in both human and animal samples. Concerning quinolones, despite a heightened resistance profile in spp. isolates from ruminant samples, there appears to be no discernible compromise to the efficacy of salmonellosis treatment in humans since lower prevalences of AMR in spp. isolated from human specimens were observed. Although the resistance of spp. indicates some degree of concern, most antibiotics are not used in veterinary medicine. Thus, the contribution of cattle, sheep and goats to the rise of antibiotic resistance of spp. and its potential impact on public health appears to be relatively insignificant, due to their low prevalence in carcasses and organs. Nevertheless, the observed low prevalence of spp. in ruminants at slaughterhouse and the correspondingly low AMR rates of spp. to key antibiotics employed in human medicine do not indicate that ruminant livestock poses a substantial public health risk concerning the transmission of AMR. Thus, the results observed in both the meta-analysis and systematic review suggests that AMR is not solely attributed to veterinary antibiotic use but is also influenced by factors such as animal health management (i.e., biosecurity measures, prophylactic schemes) and human medicine.

Keywords

References

  1. Front Microbiol. 2017 Nov 09;8:2214 [PMID: 29170662]
  2. Vet Microbiol. 2008 Apr 30;128(3-4):414-8 [PMID: 18054179]
  3. J Appl Microbiol. 2004;97(5):892-8 [PMID: 15479403]
  4. EFSA J. 2023 Dec 12;21(12):e8442 [PMID: 38089471]
  5. Front Microbiol. 2020 May 28;11:936 [PMID: 32547503]
  6. PLoS One. 2023 Aug 3;18(8):e0289208 [PMID: 37535600]
  7. PLoS Negl Trop Dis. 2019 Dec 2;13(12):e0007917 [PMID: 31790418]
  8. PLoS One. 2019 Dec 2;14(12):e0225697 [PMID: 31791047]
  9. J Epidemiol Glob Health. 2023 Dec;13(4):637-652 [PMID: 37883006]
  10. Microbiol Spectr. 2018 Jul;6(4): [PMID: 29992898]
  11. Foodborne Pathog Dis. 2016 Apr;13(4):205-11 [PMID: 26954516]
  12. Vet Clin North Am Food Anim Pract. 2018 Mar;34(1):133-154 [PMID: 29224803]
  13. Cochrane Database Syst Rev. 2012 Nov 14;11:CD001167 [PMID: 23152205]
  14. Acta Trop. 2019 Feb;190:129-136 [PMID: 30408462]
  15. Prev Vet Med. 2022 Sep;206:105697 [PMID: 35780659]
  16. Foodborne Pathog Dis. 2013 Dec;10(12):1008-15 [PMID: 24102082]
  17. Int J Food Microbiol. 2022 Oct 16;379:109850 [PMID: 35961158]
  18. Int J Environ Res Public Health. 2018 Apr 26;15(5): [PMID: 29701663]
  19. Antimicrob Agents Chemother. 2004 Oct;48(10):4012-5 [PMID: 15388468]
  20. Foodborne Pathog Dis. 2009 Mar;6(2):207-15 [PMID: 19099358]
  21. J Antimicrob Chemother. 2009 Oct;64(4):723-30 [PMID: 19638354]
  22. Vet World. 2019 Jul;12(7):984-993 [PMID: 31528022]
  23. Trop Anim Health Prod. 2013 Apr;45(4):995-1000 [PMID: 23224863]
  24. Enferm Infecc Microbiol Clin. 2010 Feb;28(2):122-30 [PMID: 20097452]
  25. Curr Microbiol. 2022 Dec 2;80(1):11 [PMID: 36459239]
  26. Braz J Microbiol. 2019 Oct;50(4):1139-1144 [PMID: 31606855]
  27. Trop Anim Health Prod. 2006;38(6):455-62 [PMID: 17243472]
  28. Microorganisms. 2022 Apr 13;10(4): [PMID: 35456862]
  29. Lett Appl Microbiol. 2009 Feb;48(2):193-7 [PMID: 19055632]
  30. Vet J. 2014 May;200(2):230-9 [PMID: 24685099]
  31. Southeast Asian J Trop Med Public Health. 2005 Nov;36(6):1510-5 [PMID: 16610654]
  32. Rev Argent Microbiol. 2023 Jan-Mar;55(1):25-42 [PMID: 36137889]
  33. Vet Rec. 2020 Feb 8;186(5):156 [PMID: 31776180]
  34. Microorganisms. 2021 Apr 17;9(4): [PMID: 33920734]
  35. Antibiotics (Basel). 2020 Nov 17;9(11): [PMID: 33213050]
  36. EFSA J. 2023 Mar 06;21(3):e07867 [PMID: 36891283]
  37. Vet Microbiol. 2007 Jan 31;119(2-4):221-30 [PMID: 17034963]
  38. Foodborne Pathog Dis. 2015 Feb;12(2):110-7 [PMID: 25514213]
  39. Healthcare (Basel). 2023 Jul 05;11(13): [PMID: 37444780]
  40. Foodborne Pathog Dis. 2007 Fall;4(3):313-26 [PMID: 17883315]
  41. Int J Food Microbiol. 2022 Feb 16;363:109516 [PMID: 34990883]
  42. Foodborne Pathog Dis. 2015 Dec;12(12):953-7 [PMID: 26540254]
  43. Foodborne Pathog Dis. 2013 Apr;10(4):353-61 [PMID: 23458026]
  44. BMJ. 2015 Jan 02;350:g7647 [PMID: 25555855]
  45. Trop Anim Health Prod. 2015 Dec;47(8):1497-504 [PMID: 26255183]
  46. Int J Food Microbiol. 2013 Feb 1;161(2):69-75 [PMID: 23279815]
  47. Antibiotics (Basel). 2020 Jan 31;9(2): [PMID: 32023977]
  48. Int J Antimicrob Agents. 2019 Nov;54(5):531-537 [PMID: 31437486]
  49. J Appl Microbiol. 2019 Dec;127(6):1869-1875 [PMID: 31461201]
  50. Front Microbiol. 2017 Dec 15;8:2344 [PMID: 29326661]
  51. Curr Opin Gastroenterol. 2018 Jan;34(1):25-30 [PMID: 29059070]
  52. Mol Cell Probes. 2020 Feb;49:101476 [PMID: 31678631]
  53. Beni Suef Univ J Basic Appl Sci. 2016 Mar;5(1):45-51 [PMID: 32363209]
  54. PeerJ. 2019 Mar 21;7:e6546 [PMID: 30923650]
  55. Molecules. 2020 Dec 01;25(23): [PMID: 33271787]
  56. J Infect. 2010 Jan;60(1):21-5 [PMID: 19819256]
  57. J Health Popul Nutr. 2017 Dec 16;36(1):52 [PMID: 29246181]
  58. Foodborne Pathog Dis. 2015 Sep;12(9):759-65 [PMID: 26204443]
  59. Food Sci Nutr. 2014 Jul;2(4):436-42 [PMID: 25473501]
  60. Open Vet J. 2014;4(1):26-43 [PMID: 26623336]
  61. J Antimicrob Chemother. 2006 Aug;58(2):310-4 [PMID: 16735424]
  62. PLoS One. 2016 Dec 9;11(12):e0168016 [PMID: 27936204]
  63. Microorganisms. 2023 Mar 01;11(3): [PMID: 36985205]
  64. Trop Dis Travel Med Vaccines. 2018 Sep 24;4:13 [PMID: 30263141]
  65. Animals (Basel). 2023 Nov 27;13(23): [PMID: 38067017]
  66. Epidemiol Infect. 2014 Apr;142(4):826-32 [PMID: 23842508]
  67. Ital J Food Saf. 2022 Jun 22;11(2):9980 [PMID: 35795466]
  68. PLoS Negl Trop Dis. 2019 Dec 26;13(12):e0007955 [PMID: 31877141]
  69. Acta Trop. 2009 Aug;111(2):144-9 [PMID: 19375408]
  70. Antibiotics (Basel). 2022 Mar 21;11(3): [PMID: 35326884]
  71. J Clin Microbiol. 2003 Aug;41(8):3574-8 [PMID: 12904357]
  72. Antibiotics (Basel). 2021 Nov 23;10(12): [PMID: 34943647]
  73. Prev Vet Med. 2022 Jan;198:105546 [PMID: 34826732]
  74. J Dairy Sci. 2017 Feb;100(2):1319-1330 [PMID: 28012630]
  75. Indian J Med Res. 2005 Sep;122(3):237-42 [PMID: 16251781]
  76. PLoS One. 2019 Dec 13;14(12):e0219104 [PMID: 31835273]
  77. Expert Rev Anti Infect Ther. 2016;14(2):193-206 [PMID: 26641310]
  78. Health Res Policy Syst. 2020 Jun 8;18(1):60 [PMID: 32513200]
  79. J Food Prot. 2015 May;78(5):912-20 [PMID: 25951384]
  80. One Health. 2023 Oct 07;17:100639 [PMID: 38024252]
  81. Can J Vet Res. 2014 Jan;78(1):38-45 [PMID: 24396179]
  82. BMC Infect Dis. 2015 Feb 21;15:84 [PMID: 25887706]
  83. Vet Clin North Am Food Anim Pract. 2015 Mar;31(1):47-60, v [PMID: 25705025]
  84. Res Synth Methods. 2010 Apr;1(2):97-111 [PMID: 26061376]
  85. Antimicrob Agents Chemother. 2016 Mar 25;60(4):2567-71 [PMID: 26856840]
  86. Iran J Microbiol. 2011 Sep;3(3):112-7 [PMID: 22347592]
  87. Int Microbiol. 2011 Sep;14(3):173-81 [PMID: 22101415]
  88. Foods. 2021 Apr 21;10(5): [PMID: 33919142]
  89. BMC Vet Res. 2018 Dec 17;14(1):401 [PMID: 30558604]
  90. J Infect Dis. 2005 Feb 15;191(4):554-61 [PMID: 15655779]
  91. Microorganisms. 2022 Dec 08;10(12): [PMID: 36557685]
  92. Microb Drug Resist. 2004 Spring;10(1):51-6 [PMID: 15140394]
  93. Cold Spring Harb Perspect Med. 2016 Jun 01;6(6): [PMID: 27252397]
  94. Foodborne Pathog Dis. 2019 Mar;16(3):205-213 [PMID: 30481054]
  95. Vet Res Commun. 2009 Mar;33(3):191-209 [PMID: 18792798]
  96. J Antimicrob Chemother. 1997 Jul;40(1):67-75 [PMID: 9249206]
  97. J Appl Anim Welf Sci. 2023 May 24;:1-15 [PMID: 37222625]
  98. Front Microbiol. 2016 Nov 11;7:1789 [PMID: 27891118]
  99. Zoonoses Public Health. 2011 Mar;58(2):102-9 [PMID: 20042064]
  100. PLoS One. 2022 Jan 14;17(1):e0262308 [PMID: 35030183]
  101. Psychol Methods. 2006 Jun;11(2):193-206 [PMID: 16784338]
  102. Int J Food Microbiol. 2005 Jan 1;97(3):297-305 [PMID: 15582740]
  103. Adv Exp Med Biol. 2013;764:13-26 [PMID: 23654054]
  104. J Antimicrob Chemother. 2004 Feb;53(2):266-70 [PMID: 14729740]
  105. Syst Rev. 2015 Jan 01;4:1 [PMID: 25554246]
  106. Pathol Biol (Paris). 2011 Aug;59(4):207-12 [PMID: 20685046]
  107. Antimicrob Agents Chemother. 2005 Feb;49(2):503-11 [PMID: 15673725]
  108. Trop Anim Health Prod. 2003 Aug;35(4):309-19 [PMID: 14509538]
  109. J Food Prot. 2007 Feb;70(2):476-81 [PMID: 17340886]
  110. Biomed Res Int. 2018 Nov 4;2018:9794869 [PMID: 30533445]
  111. PLoS One. 2021 May 05;16(5):e0243681 [PMID: 33951039]
  112. Infect Ecol Epidemiol. 2021 Sep 8;11(1):1975530 [PMID: 34531964]
  113. Clin Microbiol Infect. 2020 Dec;26(12):1612-1616 [PMID: 32979568]
  114. PLoS One. 2021 Sep 21;16(9):e0249617 [PMID: 34547028]
  115. J Glob Antimicrob Resist. 2018 Sep;14:297-301 [PMID: 29842977]
  116. J Antimicrob Chemother. 2010 Apr;65(4):601-4 [PMID: 20181573]
  117. Microbiol Spectr. 2023 Feb 14;11(1):e0336422 [PMID: 36688703]
  118. Antibiotics (Basel). 2022 Aug 17;11(8): [PMID: 36009979]
  119. Meat Sci. 2016 Sep;119:154-9 [PMID: 27183540]
  120. BMC Med. 2020 Jul 17;18(1):212 [PMID: 32677939]
  121. Microb Drug Resist. 2016 Oct;22(7):598-608 [PMID: 26954009]
  122. Front Cell Infect Microbiol. 2022 Feb 02;12:805384 [PMID: 35186792]
  123. J Food Prot. 2013 Oct;76(10):1676-88 [PMID: 24112566]
  124. Vet Res Commun. 2022 Sep;46(3):799-810 [PMID: 35167002]
  125. Ann N Y Acad Sci. 2015 Sep;1354:12-31 [PMID: 26190223]
  126. Prev Vet Med. 2007 May 16;79(2-4):204-23 [PMID: 17215055]
  127. Foodborne Pathog Dis. 2010 Apr;7(4):449-57 [PMID: 19958100]
  128. Comp Immunol Microbiol Infect Dis. 2020 Jun;70:101447 [PMID: 32105836]
  129. J Antibiot (Tokyo). 2020 Jul;73(7):421-428 [PMID: 32203126]
  130. Molecules. 2021 Nov 25;26(23): [PMID: 34885734]
  131. Foodborne Pathog Dis. 2006 Winter;3(4):355-65 [PMID: 17199517]
  132. Antimicrob Agents Chemother. 2015 Nov 23;60(2):789-96 [PMID: 26596936]
  133. Food Sci Anim Resour. 2020 Jan;40(1):21-33 [PMID: 31970328]
  134. J Infect Dis. 2016 Nov 15;214(10):1565-1570 [PMID: 27609807]
  135. J Paediatr Child Health. 2017 Oct;53(10):936-941 [PMID: 28556448]
  136. Epidemiol Infect. 2014 Jan;142(1):84-9 [PMID: 23591052]
  137. Emerg Infect Dis. 2021 Oct;27(10):2554-2559 [PMID: 34545783]
  138. Antibiotics (Basel). 2020 Jan 28;9(2): [PMID: 32013023]
  139. Antibiotics (Basel). 2023 Feb 20;12(2): [PMID: 36830330]
  140. Braz J Biol. 2021 Aug 27;83:e247061 [PMID: 34468524]
  141. Infect Drug Resist. 2020 Dec 29;13:4713-4738 [PMID: 33402841]
  142. J Food Prot. 2023 May;86(5):100071 [PMID: 37028195]
  143. BMC Microbiol. 2016 Feb 16;16:20 [PMID: 26879347]
  144. Microbiology (Reading). 2018 Nov;164(11):1327-1344 [PMID: 30136920]
  145. BMC Infect Dis. 2011 Aug 19;11:222 [PMID: 21854583]
  146. Front Microbiol. 2016 Oct 18;7:1626 [PMID: 27803693]
  147. J Food Prot. 2001 Jan;64(1):3-11 [PMID: 11198437]
  148. Pathogens. 2020 Oct 19;9(10): [PMID: 33086687]
  149. Heliyon. 2020 Jan 30;6(1):e03206 [PMID: 32042963]
  150. Front Microbiol. 2015 Jun 22;6:602 [PMID: 26157426]
  151. Antimicrob Agents Chemother. 2015 Nov 09;60(1):537-43 [PMID: 26552976]
  152. J Food Prot. 2005 Apr;68(4):696-702 [PMID: 15830658]
  153. J Dairy Sci. 2022 Feb;105(2):1493-1503 [PMID: 34955273]
  154. Antibiotics (Basel). 2021 Oct 28;10(11): [PMID: 34827252]
  155. J Food Prot. 2006 Oct;69(10):2342-51 [PMID: 17066911]
  156. Vet Res Commun. 2023 Dec;47(4):1907-1913 [PMID: 37199834]
  157. Clin Microbiol Rev. 2015 Oct;28(4):901-37 [PMID: 26180063]
  158. Int J Bacteriol. 2016;2016:3714785 [PMID: 27660816]
  159. Int J Antimicrob Agents. 2005 Jul;26(1):33-7 [PMID: 15953709]
  160. Drug Resist Updat. 2013 Feb-Apr;16(1-2):22-45 [PMID: 23395305]
  161. Clin Microbiol Infect. 2020 Jul;26(7):871-879 [PMID: 31811919]
  162. Front Vet Sci. 2021 Jan 06;7:613718 [PMID: 33490138]
  163. J Antimicrob Chemother. 2019 Sep 1;74(9):2480-2496 [PMID: 31002332]

Grants

  1. UIDB/00772/2020/Funda����o para a Ci��ncia e Tecnologia
  2. LA/P/0059/2020/Funda����o para a Ci��ncia e Tecnologia

Word Cloud

Created with Highcharts 10.0.0sppAMRresistanceprevalencehumanhealthtreatmentmedicinelowantibioticsantimicrobialruminantsmeta-analysiscattlesheepusedsalmonellosishumansobservedpubliccausefoodborneconcernrisklargesmallslaughterhousesratessystematicreviewresults8goatshighisolatesalsoanimalsamplesruminantappearsveterinaryThusantibioticposeglobalthreatleadingillnessesparticularlyprevalentEuropeanUnionEUremainssecondoutbreaksemergencebecomecriticalcomplicatingstrategiesescalatingsevereinfectionsstudyfocusesidentifyingrevealingvariedacrossfamiliesthroughoutAlsocomparisoncarriedpresentdisplayed01%31%704%612%According20141362antimicrobialsstudiedclassified<5%>5%<10%>10%respectivelydisplayaztreonammezlocillinertapenemmeropenemcefoxitinceftazidimelevofloxacintilmicosinlinezolidfosfomycinfurazolidonequinupristintrimethoprimspectinomycincontrast100%describedofloxacinlincomycincloxacillincontextmainazithromycinshownhighestamongRegardingcephalosporinsclasssimilarConcerningquinolonesdespiteheightenedprofilediscerniblecompromiseefficacysincelowerprevalencesisolatedspecimensAlthoughindicatesdegreecontributionrisepotentialimpactrelativelyinsignificantduecarcassesorgansNeverthelessslaughterhousecorrespondinglykeyemployedindicatelivestockposessubstantialconcerningtransmissionsuggestssolelyattributeduseinfluencedfactorsmanagementiebiosecuritymeasuresprophylacticschemesDomesticRuminantsEvaluationAntimicrobialResistanceBasedOneHealthApproach-ASystematicReviewMeta-AnalysisSalmonellafoodsafetygoatone

Similar Articles

Cited By