Humanized Mouse Models of Bacterial Infections.

Katya McDonald, Adryiana Rodriguez, Gowrishankar Muthukrishnan
Author Information
  1. Katya McDonald: Center for Musculoskeletal Research, Department of Orthopaedics, University of Rochester Medical Center, 601 Elmwood Avenue, Box 665, Rochester, NY 14642, USA. ORCID
  2. Adryiana Rodriguez: Center for Musculoskeletal Research, Department of Orthopaedics, University of Rochester Medical Center, 601 Elmwood Avenue, Box 665, Rochester, NY 14642, USA.
  3. Gowrishankar Muthukrishnan: Center for Musculoskeletal Research, Department of Orthopaedics, University of Rochester Medical Center, 601 Elmwood Avenue, Box 665, Rochester, NY 14642, USA. ORCID

Abstract

Bacterial infections continue to represent a significant healthcare burden worldwide, causing considerable mortality and morbidity every year. The emergence of multidrug-resistant bacterial strains continues to rise, posing serious risks to controlling global disease outbreaks. To develop novel and more effective treatment and vaccination programs, there is a need for clinically relevant small animal models. Since multiple bacterial species have human-specific tropism for numerous virulence factors and toxins, conventional mouse models do not fully represent human disease. Several human disease characteristic phenotypes, such as lung granulomas in the case of infections, are absent in standard mouse models. Alternatively, certain pathogens, such as serovar and , can be well tolerated in mice and cleared quickly. To address this, multiple groups have developed humanized mouse models and observed enhanced susceptibility to infection and a more faithful recapitulation of human disease. In the last two decades, multiple humanized mouse models have been developed to attempt to recapitulate the human immune system in a small animal model. In this review, we first discuss the history of immunodeficient mice that has enabled the engraftment of human tissue and the engraftment methods currently used in the field. We then highlight how humanized mouse models successfully uncovered critical human immune responses to various bacterial infections, including , , and .

Keywords

References

  1. Nat Rev Immunol. 2012 Nov;12(11):786-98 [PMID: 23059428]
  2. J Infect Dis. 2015 Aug 1;212(3):435-44 [PMID: 25657257]
  3. Cell Microbiol. 2018 Sep;20(9):e12939 [PMID: 30030897]
  4. Pathogens. 2023 Jun 27;12(7): [PMID: 37513726]
  5. JBMR Plus. 2024 Jan 04;8(2):ziad005 [PMID: 38505530]
  6. mBio. 2018 Mar 20;9(2): [PMID: 29559573]
  7. Hypertension. 2020 Apr;75(4):935-937 [PMID: 32078397]
  8. Transplantation. 2010 Dec 27;90(12):1321-7 [PMID: 21048528]
  9. BMJ. 2007 Oct 27;335(7625):879-83 [PMID: 17962288]
  10. MMWR Morb Mortal Wkly Rep. 2023 Feb 17;72(7):171-176 [PMID: 36795626]
  11. BMC Infect Dis. 2014 Dec 31;14:723 [PMID: 25551464]
  12. Emerg Microbes Infect. 2014 Mar;3(3):e23 [PMID: 26038515]
  13. PLoS Med. 2016 Oct 25;13(10):e1002152 [PMID: 27780211]
  14. PLoS Pathog. 2013 Feb;9(2):e1003143 [PMID: 23436994]
  15. Cancers (Basel). 2023 Jun 03;15(11): [PMID: 37297008]
  16. Proc Natl Acad Sci U S A. 2013 Apr 16;110(16):6482-7 [PMID: 23559373]
  17. Leukemia. 2010 Oct;24(10):1785-8 [PMID: 20686503]
  18. Clin Exp Immunol. 2013 Dec;174(3):372-88 [PMID: 23869841]
  19. Viruses. 2023 Feb 09;15(2): [PMID: 36851692]
  20. Cell Death Differ. 2018 May;25(5):951-965 [PMID: 29229989]
  21. Front Oncol. 2024 Mar 13;14:1330254 [PMID: 38544830]
  22. Lancet. 2023 Dec 17;400(10369):2221-2248 [PMID: 36423648]
  23. Cureus. 2023 Sep 19;15(9):e45530 [PMID: 37868444]
  24. Biomed Pharmacother. 2023 Mar;159:114212 [PMID: 36610224]
  25. Transplantation. 2020 Nov;104(11):2290-2306 [PMID: 32068660]
  26. mBio. 2018 Feb 20;9(1): [PMID: 29463654]
  27. Am J Reprod Immunol. 2018 Jul;80(1):e12859 [PMID: 29672989]
  28. Nat Biotechnol. 2019 Oct;37(10):1163-1173 [PMID: 31451733]
  29. PLoS One. 2013 May 17;8(5):e63331 [PMID: 23691024]
  30. Biol Blood Marrow Transplant. 1996 Feb;2(1):15-23 [PMID: 9078350]
  31. J Immunol. 2015 Apr 1;194(7):3513-25 [PMID: 25712215]
  32. Clin Exp Immunol. 2008 Nov;154(2):270-84 [PMID: 18785974]
  33. Front Immunol. 2022 Oct 19;13:1007579 [PMID: 36341323]
  34. J Exp Med. 2009 Jun 8;206(6):1423-34 [PMID: 19487422]
  35. Clin Microbiol Rev. 2015 Jul;28(3):603-61 [PMID: 26016486]
  36. Science. 2004 Apr 2;304(5667):104-7 [PMID: 15064419]
  37. Front Microbiol. 2023 Jan 10;13:1067284 [PMID: 36704547]
  38. Front Immunol. 2021 Feb 22;12:643852 [PMID: 33692812]
  39. J Immunol. 2004 Mar 1;172(5):2731-8 [PMID: 14978070]
  40. J Clin Microbiol. 2008 Mar;46(3):1019-25 [PMID: 18174295]
  41. J Immunol. 2005 May 15;174(10):6477-89 [PMID: 15879151]
  42. NPJ Vaccines. 2023 Feb 23;8(1):25 [PMID: 36823425]
  43. Nat Commun. 2024 Apr 4;15(1):2917 [PMID: 38575562]
  44. Mol Cell Biol. 1998 Aug;18(8):4670-8 [PMID: 9671477]
  45. J Infect Dis. 2012 Feb 15;205(4):595-602 [PMID: 22198962]
  46. mSystems. 2024 Mar 19;9(3):e0132223 [PMID: 38303112]
  47. Blood. 2002 Nov 1;100(9):3175-82 [PMID: 12384415]
  48. Cell Mol Immunol. 2011 Jan;8(1):83-7 [PMID: 21200387]
  49. J Allergy Clin Immunol. 2023 Feb;151(2):526-538.e8 [PMID: 35963455]
  50. Trends Immunol. 2018 Sep;39(9):748-763 [PMID: 30077656]
  51. Viruses. 2023 Jan 13;15(1): [PMID: 36680271]
  52. Evol Med Public Health. 2016 May 21;2016(1):170-6 [PMID: 27121451]
  53. Curr Opin Microbiol. 2023 Apr;72:102262 [PMID: 36640585]
  54. Future Microbiol. 2009 Oct;4(8):999-1008 [PMID: 19824791]
  55. Lancet Microbe. 2023 Jan;4(1):e20 [PMID: 36521512]
  56. Nat Rev Genet. 2003 Mar;4(3):195-205 [PMID: 12610524]
  57. Cell. 2012 Oct 26;151(3):590-602 [PMID: 23101627]
  58. Cell. 1992 Mar 6;68(5):869-77 [PMID: 1547488]
  59. Sci Rep. 2017 Dec 8;7(1):17230 [PMID: 29222435]
  60. Annu Rev Pathol. 2017 Jan 24;12:187-215 [PMID: 27959627]
  61. Mol Ther. 2024 Apr 3;32(4):1000-1015 [PMID: 38414243]
  62. Front Immunol. 2019 Feb 20;10:263 [PMID: 30842774]
  63. Clin Exp Immunol. 2004 Sep;137(3):460-8 [PMID: 15320894]
  64. Science. 1988 Sep 23;241(4873):1632-9 [PMID: 2971269]
  65. PLoS One. 2011;6(5):e19826 [PMID: 21611197]
  66. Front Immunol. 2022 Jun 20;13:892053 [PMID: 35795674]
  67. Cell Host Microbe. 2019 Sep 11;26(3):426-434.e6 [PMID: 31447308]
  68. Sci Transl Med. 2012 Mar 14;4(125):125ra30 [PMID: 22422991]
  69. Cell Host Microbe. 2010 Oct 21;8(4):369-76 [PMID: 20951970]
  70. FASEB J. 2019 Mar;33(3):3137-3151 [PMID: 30383447]
  71. Expert Rev Vaccines. 2009 Jan;8(1):113-20 [PMID: 19093778]
  72. Microbiology (Reading). 2019 May;165(5):492-499 [PMID: 30775961]
  73. Cold Spring Harb Perspect Med. 2015 Feb 06;5(11): [PMID: 25659380]
  74. Immunity. 1995 Mar;2(3):223-38 [PMID: 7697543]
  75. Front Microbiol. 2018 Nov 30;9:2897 [PMID: 30555441]
  76. Cell. 1995 Mar 10;80(5):813-23 [PMID: 7889575]
  77. Nat Cell Biol. 2007 Sep;9(9):993-9 [PMID: 17762889]
  78. Jikken Dobutsu. 1980 Jan;29(1):1-13 [PMID: 6995140]
  79. EBioMedicine. 2022 Jul;81:104113 [PMID: 35753153]
  80. Nat Rev Clin Oncol. 2023 Mar;20(3):192-206 [PMID: 36635480]
  81. mBio. 2024 Apr 10;15(4):e0045424 [PMID: 38497655]
  82. FEMS Microbiol Lett. 2010 Apr;305(1):1-13 [PMID: 20146749]
  83. PLoS Pathog. 2015 Nov 30;11(11):e1005292 [PMID: 26618545]
  84. J Infect Dis. 2017 May 1;215(9):1386-1395 [PMID: 27638942]
  85. PLoS One. 2012;7(9):e44664 [PMID: 22957096]
  86. J Clin Invest. 2023 Jan 3;133(1): [PMID: 36594471]
  87. Cancer Sci. 2021 Jul;112(7):2592-2606 [PMID: 33938090]
  88. Int Arch Allergy Appl Immunol. 1980;62(3):330-3 [PMID: 6993372]
  89. Blood. 2006 Jul 15;108(2):487-92 [PMID: 16410443]
  90. J Immunol. 1995 Jan 1;154(1):180-91 [PMID: 7995938]
  91. Front Immunol. 2023 Dec 12;14:1311658 [PMID: 38152397]
  92. Front Immunol. 2023 Mar 10;14:1127709 [PMID: 36969151]
  93. Exp Hematol. 1999 Sep;27(9):1418-27 [PMID: 10480433]
  94. Trends Microbiol. 2019 Jun;27(6):497-507 [PMID: 30846311]
  95. Am J Pathol. 1992 Nov;141(5):1097-113 [PMID: 1332484]
  96. BMJ. 2006 Jul 8;333(7558):78-82 [PMID: 16825230]
  97. Proc Natl Acad Sci U S A. 2015 Jan 27;112(4):E345 [PMID: 25540422]
  98. Curr Top Microbiol Immunol. 2008;324:149-65 [PMID: 18481459]
  99. Front Immunol. 2021 Mar 18;12:651515 [PMID: 33815412]
  100. Proc Natl Acad Sci U S A. 2013 Feb 26;110(9):3507-12 [PMID: 23401516]
  101. Int J Environ Res Public Health. 2020 Mar 22;17(6): [PMID: 32235764]
  102. Commun Biol. 2024 Mar 9;7(1):294 [PMID: 38461214]
  103. Nature. 1983 Feb 10;301(5900):527-30 [PMID: 6823332]
  104. Immunol Cell Biol. 2015 Sep;93(8):716-26 [PMID: 25744551]
  105. Proc Natl Acad Sci U S A. 2010 Jul 20;107(29):13022-7 [PMID: 20615947]
  106. Blood. 2004 Dec 15;104(13):3886-93 [PMID: 15319293]
  107. Proc Natl Acad Sci U S A. 2010 Aug 31;107(35):15589-94 [PMID: 20713716]
  108. Science. 1988 Dec 23;242(4886):1706-9 [PMID: 2904703]
  109. Nature. 1988 Sep 15;335(6187):256-9 [PMID: 2970594]
  110. Front Immunol. 2019 Feb 13;10:186 [PMID: 30814997]
  111. Genet Res. 1966 Dec;8(3):295-309 [PMID: 5980117]
  112. mBio. 2023 Aug 31;14(4):e0113723 [PMID: 37341487]
  113. Biomedicines. 2021 Dec 24;10(1): [PMID: 35052714]
  114. Microbiol Mol Biol Rev. 2014 Jun;78(2):199-230 [PMID: 24847020]
  115. Proc Natl Acad Sci U S A. 2015 Jan 27;112(4):1167-72 [PMID: 25092317]
  116. Mol Neurodegener. 2021 Nov 22;16(1):78 [PMID: 34809709]
  117. Infect Immun. 2013 May;81(5):1520-31 [PMID: 23439310]

Grants

  1. P50 AR72000/NIH NIAMS
  2. R21 AI69736/NIH NIAID

Word Cloud

Created with Highcharts 10.0.0modelshumanmouseinfectionsbacterialdiseasehumanizedmultiplemiceBacterialrepresentsmallanimaldevelopedimmuneengraftmenttuberculosiscontinuesignificanthealthcareburdenworldwidecausingconsiderablemortalitymorbidityeveryyearemergencemultidrug-resistantstrainscontinuesriseposingseriousriskscontrollingglobaloutbreaksdevelopnoveleffectivetreatmentvaccinationprogramsneedclinicallyrelevantSincespecieshuman-specifictropismnumerousvirulencefactorstoxinsconventionalfullySeveralcharacteristicphenotypeslunggranulomascaseabsentstandardAlternativelycertainpathogensserovarcanwelltoleratedclearedquicklyaddressgroupsobservedenhancedsusceptibilityinfectionfaithfulrecapitulationlasttwodecadesattemptrecapitulatesystemmodelreviewfirstdiscusshistoryimmunodeficientenabledtissuemethodscurrentlyusedfieldhighlightsuccessfullyuncoveredcriticalresponsesvariousincludingHumanizedMouseModelsInfectionsMycobacteriumStaphylococcusaureus

Similar Articles

Cited By