Unlocking Phytate with Phytase: A Meta-Analytic View of Meat-Type Chicken Muscle Growth and Bone Mineralization Potential.

Emmanuel Nuamah, Utibe Mfon Okon, Eungyeong Jeong, Yejin Mun, Inhyeok Cheon, Byungho Chae, Frederick Nii Ako Odoi, Dong-Wook Kim, Nag-Jin Choi
Author Information
  1. Emmanuel Nuamah: Department of Animal Science, Jeonbuk National University, Jeonju 54896, Republic of Korea. ORCID
  2. Utibe Mfon Okon: Department of Animal Science, Faculty of Agriculture, Akwa Ibom State University, Mkpat Enin 532111, Nigeria. ORCID
  3. Eungyeong Jeong: Department of Animal Science, Jeonbuk National University, Jeonju 54896, Republic of Korea. ORCID
  4. Yejin Mun: Department of Animal Science, Jeonbuk National University, Jeonju 54896, Republic of Korea. ORCID
  5. Inhyeok Cheon: Department of Animal Science, Jeonbuk National University, Jeonju 54896, Republic of Korea. ORCID
  6. Byungho Chae: Department of Animal Science, Jeonbuk National University, Jeonju 54896, Republic of Korea. ORCID
  7. Frederick Nii Ako Odoi: Department of Animal Science, School of Agriculture, University of Cape Coast, Cape Coast CC 3321, Ghana.
  8. Dong-Wook Kim: Department of Animal Science, Korea National University of Agriculture and Fisheries, Jeonju 54874, Republic of Korea.
  9. Nag-Jin Choi: Department of Animal Science, Jeonbuk National University, Jeonju 54896, Republic of Korea. ORCID

Abstract

The inclusion of exogenous phytase in P- and Ca-deficient diets of broilers to address the growing concern about excessive P excretion into the environment over the years has been remarkably documented. However, responses among these studies have been inconsistent because of the several factors affecting P utilization. For this reason, a systematic review with a meta-analysis of results from forty-one studies published from 2000 to February 2024 was evaluated to achieve the following: (1) quantitatively summarize the size of phytase effect on growth performance, bone strength and mineralization in broilers fed diets deficient in P and Ca and (2) estimate and explore the heterogeneity in the effect size of outcomes using subgroup and meta-regression analyses. The quality of the included studies was assessed using the Cochrane Collaboration's SYRCLE risk of bias checklists for animal studies. Applying the random effects models, Hedges' g effect size of supplemented phytase was calculated using the R software (version 4.3.3, Angel Food Cake) to determine the standardized mean difference (SMD) at a 95% confidence interval. Subgroup analysis and meta-regression were used to further explore the effect size heterogeneity ( ≤ 0.05, > 50%, n ≥ 10). The meta-analysis showed that supplemental phytase increases ADFI and BWG and improves FCR at each time point of growth ( < 0.0001). Additionally, phytase supplementation consistently increased tibia ash, P and Ca, and bone strength ( < 0.0001) of broilers fed P- and Ca-deficient diets. The results of the subgroup and meta-regression analyses showed that the age and strain of broiler, dietary P source, and the duration of phytase exposure significantly influence the effect size of phytase on growth and bone parameters. In conclusion, phytase can attenuate the effect of reducing dietary-available phosphorus and calcium and improve ADFI, BWG, and FCR, especially when added to starter diets. It further enhances bone ash, bone mineralization, and the bone-breaking strength of broilers, even though the effects of bone ash and strength can be maximized in the starter phase of growth. However, the effect sizes of phytase were related to the age and strain of the broiler, dietary P source, and the duration of phytase exposure rather than the dosage.

Keywords

References

  1. Poult Sci. 2019 Jun 1;98(6):2588-2597 [PMID: 30753622]
  2. Poult Sci. 2020 Feb;99(2):981-991 [PMID: 32036990]
  3. BMJ. 1997 Sep 13;315(7109):629-34 [PMID: 9310563]
  4. BMJ. 2011 Feb 10;342:d549 [PMID: 21310794]
  5. J Anim Sci. 1972 Sep;35(3):695-712 [PMID: 4560285]
  6. Poult Sci. 2006 Mar;85(3):493-7 [PMID: 16553281]
  7. J Anim Physiol Anim Nutr (Berl). 2015 Aug;99(4):605-25 [PMID: 25405653]
  8. Stat Methods Med Res. 1993;2(2):121-45 [PMID: 8261254]
  9. Poult Sci. 2013 Mar;92(3):719-25 [PMID: 23436522]
  10. Poult Sci. 2009 May;88(5):1070-7 [PMID: 19359697]
  11. Poult Sci. 2014 Apr;93(4):906-15 [PMID: 24706968]
  12. Animals (Basel). 2021 Nov 24;11(12): [PMID: 34944129]
  13. Nutr Res Rev. 2006 Jun;19(1):90-103 [PMID: 19079878]
  14. Poult Sci. 2014 Aug;93(8):1981-92 [PMID: 24902701]
  15. Poult Sci. 2004 Jun;83(6):962-70 [PMID: 15206623]
  16. Animals (Basel). 2022 Aug 01;12(15): [PMID: 35953941]
  17. Curr Opin Biotechnol. 2012 Dec;23(6):872-7 [PMID: 22796051]
  18. J Anim Sci. 2022 Feb 1;100(2): [PMID: 35137139]
  19. Poult Sci. 2014 May;93(5):1172-7 [PMID: 24795309]
  20. Poult Sci. 2015 May;94(5):1018-29 [PMID: 25810408]
  21. Poult Sci. 2013 Aug;92(8):2101-8 [PMID: 23873558]
  22. PLoS One. 2009 Nov 30;4(11):e7824 [PMID: 19956596]
  23. Br Poult Sci. 2019 Aug;60(4):439-448 [PMID: 30966791]
  24. Poult Sci. 2006 Aug;85(8):1389-97 [PMID: 16903469]
  25. Poult Sci. 2015 Nov;94(11):2753-62 [PMID: 26500275]
  26. Poult Sci. 2008 Jun;87(6):1105-11 [PMID: 18492998]
  27. Poult Sci. 2023 Nov;102(11):103062 [PMID: 37742452]
  28. Poult Sci. 2021 Feb;100(2):964-972 [PMID: 33518150]
  29. Front Microbiol. 2016 Dec 19;7:2033 [PMID: 28066358]
  30. Poult Sci. 2015 Dec;94(12):2917-31 [PMID: 26476089]
  31. Poult Sci. 2010 Sep;89(9):1939-46 [PMID: 20709979]
  32. J Anim Sci. 2011 Oct;89(10):3189-218 [PMID: 21512114]
  33. Poult Sci. 1999 Mar;78(3):366-77 [PMID: 10090263]
  34. Poult Sci. 2018 Jan 1;97(1):211-218 [PMID: 29077957]
  35. Nutr Res Rev. 2000 Dec;13(2):255-78 [PMID: 19087442]
  36. Poult Sci. 2023 Nov;102(11):103014 [PMID: 37672835]
  37. Poult Sci. 2002 Aug;81(8):1172-83 [PMID: 12211310]
  38. Poult Sci. 1976 Nov;55(6):2262-4 [PMID: 1019083]
  39. Poult Sci. 2015 May;94(5):1009-17 [PMID: 25834252]
  40. Br J Nutr. 1991 Sep;66(2):251-9 [PMID: 1662069]
  41. Poult Sci. 1998 Dec;77(12):1899-904 [PMID: 9872594]
  42. Poult Sci. 2008 May;87(5):949-57 [PMID: 18420986]
  43. Animals (Basel). 2022 May 31;12(11): [PMID: 35681882]
  44. Animal. 2024 Jun;18(6):101180 [PMID: 38823282]
  45. J Sci Food Agric. 2015 Mar 30;95(5):878-96 [PMID: 25382707]
  46. Poult Sci. 2013 Aug;92(8):2124-34 [PMID: 23873561]
  47. Poult Sci. 1986 Jan;65(1):78-84 [PMID: 3960819]
  48. Poult Sci. 2005 Feb;84(2):248-55 [PMID: 15742961]
  49. Poult Sci. 2015 May;94(5):955-64 [PMID: 25701208]
  50. Poult Sci. 2019 Jul 1;98(7):2906-2918 [PMID: 30768134]
  51. Asian-Australas J Anim Sci. 2015 Oct;28(10):1479-87 [PMID: 26323404]
  52. Anim Nutr. 2016 Jun;2(2):86-92 [PMID: 29767084]
  53. Br Poult Sci. 1991 Jul;32(3):515-23 [PMID: 1716507]
  54. Poult Sci. 2010 Oct;89(10):2221-9 [PMID: 20852113]
  55. Poult Sci. 2016 Mar;95(3):581-9 [PMID: 26740131]
  56. Poult Sci. 2019 Nov 1;98(11):5789-5800 [PMID: 31265114]
  57. J Anim Sci. 2022 Jan 1;100(1): [PMID: 34979552]
  58. PLoS One. 2015 Mar 17;10(3):e0119770 [PMID: 25781608]
  59. J Anim Sci. 1997 Dec;75(12):3174-86 [PMID: 9419991]
  60. Stroke. 2009 Mar;40(3):e50-2 [PMID: 18703798]
  61. PLoS One. 2015 Nov 20;10(11):e0143442 [PMID: 26588075]
  62. Poult Sci. 1995 Nov;74(11):1831-42 [PMID: 8614692]
  63. J AOAC Int. 1994 May-Jun;77(3):760-4 [PMID: 8012231]
  64. Poult Sci. 2020 Mar;99(3):1540-1550 [PMID: 32111321]
  65. Br J Nutr. 2008 Mar;99(3):682-90 [PMID: 17761011]
  66. Poult Sci. 1996 Feb;75(2):240-9 [PMID: 8833377]
  67. Antioxidants (Basel). 2024 Feb 15;13(2): [PMID: 38397834]
  68. Br Poult Sci. 2011 Apr;52(2):245-54 [PMID: 21491248]
  69. Animal. 2010 Nov;4(11):1844-53 [PMID: 22445145]
  70. J Anim Sci. 1999 Feb;77(2):427-9 [PMID: 10100672]
  71. BMC Med Res Methodol. 2014 Mar 26;14:43 [PMID: 24667063]
  72. Poult Sci. 2017 Jul 1;96(7):2243-2253 [PMID: 28204754]
  73. Poult Sci. 2005 Aug;84(8):1232-41 [PMID: 16156207]
  74. Poult Sci. 2018 Apr 1;97(4):1155-1162 [PMID: 29444320]
  75. Int J Surg. 2021 Apr;88:105906 [PMID: 33789826]
  76. Poult Sci. 2017 Mar 1;96(3):611-621 [PMID: 27591272]
  77. Poult Sci. 2004 Aug;83(8):1358-67 [PMID: 15339011]
  78. Poult Sci. 2014 Nov;93(11):2752-62 [PMID: 25143591]
  79. Poult Sci. 2000 Jul;79(7):1024-32 [PMID: 10901206]
  80. J Environ Qual. 2002 Sep-Oct;31(5):1601-9 [PMID: 12371177]
  81. Res Synth Methods. 2017 Mar;8(1):5-18 [PMID: 28058794]
  82. Poult Sci. 1999 Nov;78(11):1588-95 [PMID: 10560833]
  83. J Agric Food Chem. 2003 Jul 30;51(16):4687-93 [PMID: 14705897]
  84. Poult Sci. 2019 Sep 1;98(9):3884-3893 [PMID: 30877747]
  85. Poult Sci. 2002 Mar;81(3):400-7 [PMID: 11902418]

Grants

  1. Cooperative Research Program for Agriculture Science & Technology Development (Project No. RS-2021-RD009994)/Rural Development Administration

Word Cloud

Created with Highcharts 10.0.0phytaseeffectPbonebroilerssizegrowthdietsstudiesstrengthusingmeta-regression0ashexogenousP-Ca-deficientHoweverutilizationmeta-analysisresultsperformancemineralizationfedCaexploreheterogeneitysubgroupanalyseseffects3showedADFIBWGFCR<0001agestrainbroilerdietarysourcedurationexposurecanphosphoruscalciumstarterinclusionaddressgrowingconcernexcessiveexcretionenvironmentyearsremarkablydocumentedresponsesamonginconsistentseveralfactorsaffectingreasonsystematicreviewforty-onepublished2000February2024evaluatedachievefollowing:1quantitativelysummarizedeficient2estimateoutcomesqualityincludedassessedCochraneCollaboration'sSYRCLEriskbiaschecklistsanimalApplyingrandommodelsHedges'gsupplementedcalculatedRsoftwareversion4AngelFoodCakedeterminestandardizedmeandifferenceSMD95%confidenceintervalSubgroupanalysisused05>50%n10supplementalincreasesimprovestimepointAdditionallysupplementationconsistentlyincreasedtibiasignificantlyinfluenceparametersconclusionattenuatereducingdietary-availableimproveespeciallyaddedenhancesbone-breakingeventhoughmaximizedphasesizesrelatedratherdosageUnlockingPhytatePhytase:Meta-AnalyticViewMeat-TypeChickenMuscleGrowthBoneMineralizationPotentialenzymemineralwelfare

Similar Articles

Cited By