Anti-Biofilm Perspectives of Propolis against Infections.

Virginia Vadillo-Rodríguez, Irene Fernández-Babiano, Ciro Pérez-Giraldo, María Coronada Fernández-Calderón
Author Information
  1. Virginia Vadillo-Rodríguez: Department of Applied Physics, University of Extremadura, 06006 Badajoz, Spain. ORCID
  2. Irene Fernández-Babiano: Department of Biomedical Science, Area of Microbiology, University of Extremadura, 06006 Badajoz, Spain.
  3. Ciro Pérez-Giraldo: Department of Biomedical Science, Area of Microbiology, University of Extremadura, 06006 Badajoz, Spain.
  4. María Coronada Fernández-Calderón: Department of Biomedical Science, Area of Microbiology, University of Extremadura, 06006 Badajoz, Spain. ORCID

Abstract

has emerged as the main causative agent of medical device-related infections. Their major pathogenicity factor lies in its ability to adhere to surfaces and proliferate into biofilms, which increase their resistance to antibiotics. The main objective of this study was to evaluate the use and the mechanism of action of an ethanolic extract of Spanish propolis (EESP) as a potential alternative for preventing biofilm-related infections caused by . The chemical composition of propolis is reported and its antibacterial activity against several strains of with different biofilm-forming capacities evaluated. The influence of sub-inhibitory concentrations (sub-MICs) of EESP on their growth, physicochemical surface properties, adherence, and biofilm formation were studied. EESP interferes with planktonic cells, homogenizing their physicochemical surface properties and introducing a significant delay in their growth. The adherence and biofilms at the EESP concentrations investigated were decreased up to 90.5% among the strains. Microscopic analysis indicated that the planktonic cells that survived the treatment were the ones that adhere and proliferate on the surfaces. The results obtained suggest that the EESP has a high potential to be used as an inhibitor of both the adhesion and biofilm formation of

Keywords

References

  1. J Appl Microbiol. 2009 Nov;107(5):1669-80 [PMID: 19457040]
  2. Molecules. 2021 Sep 06;26(17): [PMID: 34500838]
  3. Sci Rep. 2022 Sep 09;12(1):15254 [PMID: 36085334]
  4. Microbiol Mol Biol Rev. 2020 Aug 12;84(3): [PMID: 32792334]
  5. Chin Med. 2022 Aug 26;17(1):100 [PMID: 36028892]
  6. Molecules. 2022 Nov 24;27(23): [PMID: 36500292]
  7. Sci Rep. 2021 Dec 13;11(1):23860 [PMID: 34903790]
  8. Antioxidants (Basel). 2013 Dec 20;3(1):1-23 [PMID: 26784660]
  9. Infect Control Hosp Epidemiol. 2002 Apr;23(4):183-9 [PMID: 12002232]
  10. Braz J Microbiol. 2021 Dec;52(4):1651-1664 [PMID: 34231118]
  11. BMC Microbiol. 2023 Nov 17;23(1):353 [PMID: 37978430]
  12. Antibiotics (Basel). 2020 Sep 24;9(10): [PMID: 32987638]
  13. Microbiol Res. 2006;161(4):327-33 [PMID: 16427259]
  14. Antioxidants (Basel). 2022 Jun 23;11(7): [PMID: 35883723]
  15. Pharmaceutics. 2022 Mar 15;14(3): [PMID: 35336016]
  16. Infect Immun. 1990 Sep;58(9):2906-11 [PMID: 2387626]
  17. Appl Environ Microbiol. 2022 Feb 8;88(3):e0184921 [PMID: 34878817]
  18. Infect Drug Resist. 2018 Oct 10;11:1645-1658 [PMID: 30349322]
  19. BMC Complement Med Ther. 2022 Jul 20;22(1):194 [PMID: 35858857]
  20. Molecules. 2022 Jan 17;27(2): [PMID: 35056886]
  21. BMC Complement Med Ther. 2021 May 21;21(1):147 [PMID: 34020643]
  22. Phytomedicine. 2006 Feb;13(3):170-5 [PMID: 16428024]
  23. Adv Sci (Weinh). 2021 Aug;8(15):e2100749 [PMID: 34041861]
  24. Molecules. 2020 Jul 22;25(15): [PMID: 32707882]
  25. Evid Based Complement Alternat Med. 2013;2013:590703 [PMID: 23662143]
  26. Nutrients. 2024 May 13;16(10): [PMID: 38794712]
  27. Adv Sci (Weinh). 2023 Sep;10(26):e2300472 [PMID: 37407512]
  28. PLoS One. 2019 Feb 28;14(2):e0213079 [PMID: 30818374]
  29. Chem Biodivers. 2021 Aug;18(8):e2100307 [PMID: 34086414]
  30. Heliyon. 2018 Dec 28;4(12):e01067 [PMID: 30619958]
  31. Front Microbiol. 2023 Feb 10;14:1135308 [PMID: 36860482]
  32. Comput Struct Biotechnol J. 2020 Nov 04;18:3324-3334 [PMID: 33240473]
  33. Microbiol Res. 2003;158(4):353-7 [PMID: 14717457]
  34. Antibiotics (Basel). 2023 Feb 08;12(2): [PMID: 36830258]
  35. Lett Appl Microbiol. 2016 Feb;62(2):192-8 [PMID: 26643709]
  36. Pathogens. 2020 Aug 11;9(8): [PMID: 32796690]
  37. Colloids Surf B Biointerfaces. 2021 Apr;200:111571 [PMID: 33476953]
  38. J Ethnopharmacol. 2000 Nov;73(1-2):243-9 [PMID: 11025162]
  39. Adv Dent Res. 1997 Nov;11(4):388-94 [PMID: 9470495]
  40. Antibiotics (Basel). 2024 Apr 09;13(4): [PMID: 38667019]
  41. Front Pharmacol. 2022 Feb 23;13:839808 [PMID: 35281905]

Grants

  1. PID2022-140422OB-I00/Agencia Estatal de Investigación
  2. Una manera de hacer Europa./FEDER Una manera de hacer Europa.

MeSH Term

Biofilms
Staphylococcus epidermidis
Propolis
Anti-Bacterial Agents
Microbial Sensitivity Tests
Humans
Bacterial Adhesion
Staphylococcal Infections

Chemicals

Propolis
Anti-Bacterial Agents

Word Cloud

Created with Highcharts 10.0.0EESPbiofilmspropolispotentialmaininfectionsadheresurfacesproliferatestrainsconcentrationsgrowthphysicochemicalsurfacepropertiesadherencebiofilmformationplanktoniccellsemergedcausativeagentmedicaldevice-relatedmajorpathogenicityfactorliesabilityincreaseresistanceantibioticsobjectivestudyevaluateusemechanismactionethanolicextractSpanishalternativepreventingbiofilm-relatedcausedchemicalcompositionreportedantibacterialactivityseveraldifferentbiofilm-formingcapacitiesevaluatedinfluencesub-inhibitorysub-MICsstudiedinterfereshomogenizingintroducingsignificantdelayinvestigateddecreased905%amongMicroscopicanalysisindicatedsurvivedtreatmentonesresultsobtainedsuggesthighusedinhibitoradhesionAnti-BiofilmPerspectivesPropolisInfectionsStaphylococcusepidermidishydrophobicityzeta

Similar Articles

Cited By