Multi-Omics Approaches in Oil Palm Research: A Comprehensive Review of Metabolomics, Proteomics, and Transcriptomics Based on Low-Temperature Stress.

Jerome Jeyakumar John Martin, Yuqiao Song, Mingming Hou, Lixia Zhou, Xiaoyu Liu, Xinyu Li, Dengqiang Fu, Qihong Li, Hongxing Cao, Rui Li
Author Information
  1. Jerome Jeyakumar John Martin: National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
  2. Yuqiao Song: National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
  3. Mingming Hou: National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
  4. Lixia Zhou: National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
  5. Xiaoyu Liu: National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
  6. Xinyu Li: National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
  7. Dengqiang Fu: National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
  8. Qihong Li: National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
  9. Hongxing Cao: National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
  10. Rui Li: National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.

Abstract

oil palm ( Jacq.) is a typical tropical oil crop with a temperature of 26-28 °C, providing approximately 35% of the total world's vegetable oil. Growth and productivity are significantly affected by low-temperature stress, resulting in inhibited growth and substantial yield losses. To comprehend the intricate molecular mechanisms underlying the response and acclimation of oil palm under low-temperature stress, multi-omics approaches, including metabolomics, proteomics, and transcriptomics, have emerged as powerful tools. This comprehensive review aims to provide an in-depth analysis of recent advancements in multi-omics studies on oil palm under low-temperature stress, including the key findings from omics-based research, highlighting changes in metabolite profiles, protein expression, and gene transcription, as well as including the potential of integrating multi-omics data to reveal novel insights into the molecular networks and regulatory pathways involved in the response to low-temperature stress. This review also emphasizes the challenges and prospects of multi-omics approaches in oil palm research, providing a roadmap for future investigations. Overall, a better understanding of the molecular basis of the response of oil palm to low-temperature stress will facilitate the development of effective breeding and biotechnological strategies to improve the crop's resilience and productivity in changing climate scenarios.

Keywords

References

  1. Plant Cell Rep. 2024 Feb 21;43(3):75 [PMID: 38381195]
  2. PLoS One. 2019 Nov 27;14(11):e0225768 [PMID: 31774880]
  3. Plants (Basel). 2022 May 24;11(11): [PMID: 35684168]
  4. Plant Cell Rep. 2021 Jun;40(6):953-978 [PMID: 33559722]
  5. PLoS Comput Biol. 2017 May 18;13(5):e1005457 [PMID: 28545146]
  6. Sci Rep. 2022 Sep 15;12(1):15507 [PMID: 36109663]
  7. BMC Plant Biol. 2014 Dec 19;14:384 [PMID: 25522814]
  8. Bioinformatics. 2004 Nov 1;20(16):2878-9 [PMID: 15145805]
  9. Metabolites. 2021 Jun 02;11(6): [PMID: 34199628]
  10. PLoS One. 2014 Dec 05;9(12):e114482 [PMID: 25479236]
  11. Protoplasma. 2022 Mar;259(2):469-483 [PMID: 34212248]
  12. Sci Rep. 2018 Jan 12;8(1):691 [PMID: 29330432]
  13. Int J Mol Sci. 2021 Mar 10;22(6): [PMID: 33802225]
  14. Plants (Basel). 2021 Nov 29;10(12): [PMID: 34961092]
  15. Sci Rep. 2021 Sep 14;11(1):18271 [PMID: 34521943]
  16. Cell Discov. 2022 Jul 26;8(1):71 [PMID: 35882853]
  17. Plants (Basel). 2022 Oct 27;11(21): [PMID: 36365330]
  18. BMC Bioinformatics. 2011 Dec 22;12:491 [PMID: 22192575]
  19. Int J Mol Sci. 2022 Jan 08;23(2): [PMID: 35054846]
  20. New Phytol. 2019 Jun;222(4):1690-1704 [PMID: 30664232]
  21. BMC Bioinformatics. 2017 Jan 27;18(Suppl 1):1426 [PMID: 28466793]
  22. Nat Commun. 2014 Jun 30;5:4106 [PMID: 24978855]
  23. Protoplasma. 2022 Jan;259(1):47-60 [PMID: 33792785]
  24. Int J Mol Sci. 2019 Jan 09;20(2): [PMID: 30634475]
  25. Genes (Basel). 2019 Jan 28;10(2): [PMID: 30696086]
  26. Plant Cell Rep. 2012 Oct;31(10):1829-43 [PMID: 22699852]
  27. Mol Syst Biol. 2018 Aug 13;14(8):e8126 [PMID: 30104418]
  28. BioData Min. 2019 Jun 10;12:11 [PMID: 31198442]
  29. Mol Plant. 2021 Jan 4;14(1):115-126 [PMID: 33152518]
  30. Physiol Mol Biol Plants. 2021 Mar;27(3):587-604 [PMID: 33854286]
  31. Front Plant Sci. 2022 Dec 15;13:1030890 [PMID: 36589087]
  32. Nature. 2013 Aug 15;500(7462):340-4 [PMID: 23883930]
  33. Breed Sci. 2013 Mar;63(1):125-40 [PMID: 23641189]
  34. 3 Biotech. 2020 Jul;10(7):306 [PMID: 32566443]
  35. J Integr Plant Biol. 2020 Mar;62(3):258-263 [PMID: 32068336]
  36. Biol Direct. 2017 Sep 8;12(1):21 [PMID: 28886750]
  37. Front Plant Sci. 2022 Dec 12;13:1042828 [PMID: 36578341]
  38. Int J Mol Sci. 2022 Nov 29;23(23): [PMID: 36499255]
  39. BMC Bioinformatics. 2006 Feb 09;7:62 [PMID: 16469098]
  40. Front Plant Sci. 2014 Sep 30;5:484 [PMID: 25324846]
  41. DNA Res. 2016 Dec;23(6):527-533 [PMID: 27426468]
  42. J Integr Plant Biol. 2021 Jul;63(7):1197-1210 [PMID: 33650765]
  43. Plant J. 2015 Apr;82(2):193-207 [PMID: 25736223]
  44. Cells. 2023 Jun 22;12(13): [PMID: 37443719]
  45. Genomics Proteomics Bioinformatics. 2023 Jun;21(3):440-454 [PMID: 36435453]
  46. Breed Sci. 2016 Jan;66(1):100-15 [PMID: 27069395]
  47. PLoS One. 2021 May 06;16(5):e0249108 [PMID: 33956796]
  48. Front Plant Sci. 2023 Jan 19;14:1092584 [PMID: 36743488]
  49. Nature. 2013 Aug 15;500(7462):335-9 [PMID: 23883927]
  50. Nature. 2015 Sep 24;525(7570):533-7 [PMID: 26352475]
  51. Mol Plant. 2020 Jun 1;13(6):894-906 [PMID: 32311530]
  52. Front Plant Sci. 2022 Dec 12;13:1022167 [PMID: 36578327]
  53. PLoS One. 2018 Apr 26;13(4):e0196693 [PMID: 29698515]
  54. J Genet Eng Biotechnol. 2021 Aug 27;19(1):128 [PMID: 34448979]
  55. Plants (Basel). 2022 Nov 28;11(23): [PMID: 36501317]
  56. BMC Bioinformatics. 2004 May 14;5:59 [PMID: 15144565]

Grants

  1. 1630152023011/Central Public Interest Scientific Institution Basal Research Fund for Chinese Academy of Tropical Agricultural Sciences
  2. 2023YFD2200700/National Key R&D program of China
  3. CARS-14-2-31/China Agriculture Research System

MeSH Term

Metabolomics
Proteomics
Arecaceae
Transcriptome
Cold Temperature
Gene Expression Regulation, Plant
Gene Expression Profiling
Stress, Physiological
Cold-Shock Response
Plant Proteins
Multiomics

Chemicals

Plant Proteins

Word Cloud

Created with Highcharts 10.0.0oilstresspalmlow-temperaturemulti-omicsmolecularresponseincludingOiltemperatureprovidingproductivityapproachesreviewresearchJacqtypicaltropicalcrop26-28°Capproximately35%totalworld'svegetableGrowthsignificantlyaffectedresultinginhibitedgrowthsubstantialyieldlossescomprehendintricatemechanismsunderlyingacclimationmetabolomicsproteomicstranscriptomicsemergedpowerfultoolscomprehensiveaimsprovidein-depthanalysisrecentadvancementsstudieskeyfindingsomics-basedhighlightingchangesmetaboliteprofilesproteinexpressiongenetranscriptionwellpotentialintegratingdatarevealnovelinsightsnetworksregulatorypathwaysinvolvedalsoemphasizeschallengesprospectsroadmapfutureinvestigationsOverallbetterunderstandingbasiswillfacilitatedevelopmenteffectivebreedingbiotechnologicalstrategiesimprovecrop'sresiliencechangingclimatescenariosMulti-OmicsApproachesPalmResearch:ComprehensiveReviewMetabolomicsProteomicsTranscriptomicsBasedLow-TemperatureStressabioticlowomicstolerance

Similar Articles

Cited By (1)