Sulfonated Pentablock Copolymer (Nexar) for Water Remediation and Other Applications.

Simona Filice, Viviana Scuderi, Silvia Scalese
Author Information
  1. Simona Filice: Consiglio Nazionale delle Ricerche, Istituto per la Microelettronica e Microsistemi (CNR-IMM), Ottava Strada n.5, 95121 Catania, Italy.
  2. Viviana Scuderi: Consiglio Nazionale delle Ricerche, Istituto per la Microelettronica e Microsistemi (CNR-IMM), Ottava Strada n.5, 95121 Catania, Italy.
  3. Silvia Scalese: Consiglio Nazionale delle Ricerche, Istituto per la Microelettronica e Microsistemi (CNR-IMM), Ottava Strada n.5, 95121 Catania, Italy. ORCID

Abstract

This review focuses on the use of a sulfonated pentablock copolymer commercialized as Nexar in water purification applications. The properties and the use of sulfonated copolymers, in general, and of Nexar, in particular, are described within a brief reference focusing on the problem of different water contaminants, purification technologies, and the use of nanomaterials and nanocomposites for water treatment. In addition to desalination and pervaporation processes, adsorption and photocatalytic processes are also considered here. The reported results confirm the possibility of using Nexar as a matrix for embedded nanoparticles, exploiting their performance in adsorption and photocatalytic processes and preventing their dispersion in the environment. Furthermore, the reported antimicrobial and antibiofouling properties of Nexar make it a promising material for achieving active coatings that are able to enhance commercial filter lifetime and performance. The coated filters show selective and efficient removal of cationic contaminants in filtration processes, which is not observed with a bare commercial filter. The UV surface treatment and/or the addition of nanostructures such as graphene oxide (GO) flakes confer Nexar with coating additional functionalities and activity. Finally, other application fields of this polymer are reported, i.e., energy and/or gas separation, suggesting its possible use as an efficient and economical alternative to the more well-known Nafion polymer.

Keywords

References

  1. Int J Mol Sci. 2022 Oct 04;23(19): [PMID: 36233077]
  2. Polymers (Basel). 2022 May 27;14(11): [PMID: 35683856]
  3. ACS Appl Mater Interfaces. 2014 Aug 27;6(16):13874-83 [PMID: 24988480]
  4. Environ Sci Pollut Res Int. 2018 Feb;25(5):4446-4458 [PMID: 29185221]
  5. J Org Chem. 2005 Aug 19;70(17):6714-20 [PMID: 16095291]
  6. Macromol Rapid Commun. 2017 Mar;38(5): [PMID: 28117518]
  7. Environ Res. 2023 Jun 15;227:115786 [PMID: 37004858]
  8. Sci Total Environ. 2019 Nov 20;692:975-983 [PMID: 31540001]
  9. Top Curr Chem. 2012;322:165-92 [PMID: 22025063]
  10. Microorganisms. 2022 Apr 21;10(5): [PMID: 35630315]
  11. ACS Nano. 2011 May 24;5(5):3516-22 [PMID: 21504167]
  12. ACS Omega. 2023 May 15;8(21):18462-18471 [PMID: 37273630]
  13. Macromol Rapid Commun. 2015 Mar;36(5):432-8 [PMID: 25537368]
  14. J Hazard Mater. 2009 Dec 30;172(2-3):1321-8 [PMID: 19729240]
  15. ACS Appl Mater Interfaces. 2009 Feb;1(2):472-80 [PMID: 20353239]
  16. Nat Mater. 2009 Aug;8(8):621-9 [PMID: 19629083]
  17. Chem Soc Rev. 2012 Sep 21;41(18):5969-85 [PMID: 22776960]
  18. ACS Cent Sci. 2018 Dec 26;4(12):1697-1707 [PMID: 30648153]
  19. Polymers (Basel). 2022 Nov 23;14(23): [PMID: 36501479]
  20. Molecules. 2020 Nov 08;25(21): [PMID: 33171674]
  21. Nanomaterials (Basel). 2020 Jun 12;10(6): [PMID: 32545577]
  22. Microorganisms. 2021 Mar 11;9(3): [PMID: 33799845]
  23. Materials (Basel). 2021 Jul 01;14(13): [PMID: 34279246]
  24. Nanotechnology. 2012 Jun 22;23(24):245703 [PMID: 22641347]
  25. Environ Sci Technol. 2014 Dec 2;48(23):13880-7 [PMID: 25369240]
  26. Polymers (Basel). 2021 Nov 28;13(23): [PMID: 34883671]
  27. PeerJ. 2018 May 22;6:e4802 [PMID: 29844965]
  28. ACS Appl Mater Interfaces. 2009 Jul;1(7):1492-503 [PMID: 20355953]
  29. Chem Commun (Camb). 2005 Jul 14;(26):3325-7 [PMID: 15983662]
  30. Environ Res. 2023 Apr 1;222:115318 [PMID: 36693465]
  31. Colloids Surf B Biointerfaces. 2013 Mar 1;103:523-9 [PMID: 23261576]
  32. Polymers (Basel). 2023 Apr 24;15(9): [PMID: 37177169]
  33. Biochemistry. 1964 Jul;3:985-90 [PMID: 14214093]
  34. ACS Appl Mater Interfaces. 2012 Jun 27;4(6):2881-4 [PMID: 22692853]
  35. Environ Sci Pollut Res Int. 2021 Apr;28(16):19544-19562 [PMID: 33655475]
  36. Chemosphere. 2021 Jul;275:130104 [PMID: 33984911]
  37. Environ Sci Technol. 2011 Dec 15;45(24):10454-62 [PMID: 22070750]
  38. Angew Chem Int Ed Engl. 2020 Jan 27;59(5):1941-1949 [PMID: 31733019]
  39. J Environ Sci (China). 2008;20(1):1-13 [PMID: 18572516]
  40. ACS Nano. 2010 Jul 27;4(7):3548-53 [PMID: 20695511]
  41. Macromol Rapid Commun. 2019 Feb;40(3):e1800729 [PMID: 30417465]
  42. Nat Mater. 2014 Jul;13(7):694-8 [PMID: 24907928]
  43. ACS Appl Mater Interfaces. 2010 Mar;2(3):847-53 [PMID: 20356290]
  44. Nanotechnology. 2016 Jun 17;27(24):245704 [PMID: 27158973]
  45. Trans Am Soc Artif Intern Organs. 1963;9:92-6 [PMID: 13931916]

Grants

  1. ECS00000022/European Union (Next Generation EU), through the MUR-PNRR project "Sicilian MicronanoTech Research And Innovation Center - SAMOTHRACE

Word Cloud

Created with Highcharts 10.0.0Nexarusewaterprocessessulfonatedadsorptionreportedcopolymerpurificationpropertiescontaminantstreatmentadditionphotocatalyticperformanceantibiofoulingcommercialfilterefficientfiltrationand/orcoatingpolymerenergyreviewfocusespentablockcommercializedapplicationscopolymersgeneralparticulardescribedwithinbriefreferencefocusingproblemdifferenttechnologiesnanomaterialsnanocompositesdesalinationpervaporationalsoconsideredresultsconfirmpossibilityusingmatrixembeddednanoparticlesexploitingpreventingdispersionenvironmentFurthermoreantimicrobialmakepromisingmaterialachievingactivecoatingsableenhancelifetimecoatedfiltersshowselectiveremovalcationicobservedbareUVsurfacenanostructuresgrapheneoxideGOflakesconferadditionalfunctionalitiesactivityFinallyapplicationfieldsiegasseparationsuggestingpossibleeconomicalalternativewell-knownNafionSulfonatedPentablockCopolymerWaterRemediationApplicationsNexarTMphotocatalysis

Similar Articles

Cited By