Exploring the clinical connections between epilepsy and diabetes mellitus: Promising therapeutic strategies utilizing agmatine and metformin.
Aayushi Nangia, Janani Srividya Saravanan, Shruti Hazra, Vijayan Priya, Ravi Sudesh, Sandeep Singh Rana, Faraz Ahmad
Author Information
Aayushi Nangia: Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, India.
Janani Srividya Saravanan: Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, India.
Shruti Hazra: Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, India.
Vijayan Priya: Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, India.
Ravi Sudesh: Department of Biomedical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, India.
Sandeep Singh Rana: Department of Biosciences, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, India.
Faraz Ahmad: Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, India. faraz.ahmad@vit.ac.in.
PURPOSE: Diabetes mellitus (DM) and epilepsy and the psychological and socio-economic implications that are associated with their treatments can be quite perplexing. Metformin is an antihyperglycemic medication that is used to treat type 2 DM. In addition, metformin elicits protective actions against multiple diseases, including neurodegeneration and epilepsy. Recent studies indicate that metformin alters the resident gut microbiota in favor of species producing agmatine, an arginine metabolite which, in addition to beneficially altering metabolic pathways, is a potent neuroprotectant and neuromodulant. METHODS: We first examine the literature for epidemiological and clinical evidences linking DM and epilepsy. Next, basing our analyses on published literature, we propose the possible complementarity of agmatine and metformin in the treatment of DM and epilepsy. RESULTS: Our analyses of the clinical data suggest a significant association between pathogeneses of epilepsy and DM. Further, both agmatine and metformin appear to be multimodal therapeutic agents and have robust antiepileptogenic and antidiabetic properties. Data from animal and clinical studies largely support the use of metformin/agmatine as a double-edged pharmacotherapeutic agent against DM and epilepsy, particularly in their concurrent pathological occurrences. CONCLUSION: The present review explores the evidences and available data on possible uses of metformin/agmatine as pertinent antidiabetic and antiepileptic agents. Our hope is that this will stimulate further research on the therapeutic actions of these multimodal agents, particularly for subject-specific clinical outcomes.
Abdul-Hadi M, Naji M, Shams H et al (2020) Oxidative stress injury and glucolipotoxicity in type 2 diabetes mellitus: The potential role of metformin and sitagliptin. Biomed Biotechnol Res J 4:166���172. https://doi.org/10.4103/bbrj.bbrj_7_20
[DOI: 10.4103/bbrj.bbrj_7_20]
Abo El Gheit RE, Soliman NA, Badawi GA et al (2021) Retinoprotective effect of agmatine in streptozotocin-induced diabetic rat model: avenues for vascular and neuronal protection. J Physiol Biochem 77:305���320. https://doi.org/10.1007/s13105-021-00799-9
[DOI: 10.1007/s13105-021-00799-9]
Aguiar TS, Dantas JR, Cabral DB et al (2019) Association between high titers of glutamic acid decarboxylase antibody and epilepsy in patients with type 1 diabetes mellitus: A cross-sectional study. Seizure 71:318���321. https://doi.org/10.1016/j.seizure.2019.09.003
[DOI: 10.1016/j.seizure.2019.09.003]
Alam U, Asghar O, Azmi S, Malik RA (2014) General aspects of diabetes mellitus. pp 211���222
Alhowail A (2021) Potential mechanisms of metformin-induced memory impairment. Eur Rev Med Pharmacol Sci 25:4757���4761. https://doi.org/10.26355/eurrev_202107_26387
[DOI: 10.26355/eurrev_202107_26387]
Al-Nimer M, Al-Zuhairy S (2023) Antiepileptics pharmacotherapy or antidiabetics may hold potential in treatment of epileptic patients with diabetes mellitus: A narrative review. Hacettepe Univ J Fac Pharm 43:269���283. https://doi.org/10.52794/hujpharm.1198613
[DOI: 10.52794/hujpharm.1198613]
American Diabetes Association (2011) Standards of medical care in diabetes���2011. Diabetes Care 34:S11���S61. https://doi.org/10.2337/dc11-S011
[DOI: 10.2337/dc11-S011]
American Diabetes Association (2022) 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes���2022. Diabetes Care 45:S17���S38. https://doi.org/10.2337/dc22-S002
[DOI: 10.2337/dc22-S002]
Apostolova N, Iannantuoni F, Gruevska A et al (2020) Mechanisms of action of metformin in type 2 diabetes: Effects on mitochondria and leukocyte-endothelium interactions. Redox Biol 34:101517. https://doi.org/10.1016/j.redox.2020.101517
[DOI: 10.1016/j.redox.2020.101517]
Arbel��ez-Quintero I, Palacios M (2017) To use or not to use metformin in cerebral ischemia: A review of the application of metformin in stroke rodents. Stroke Res Treat 2017:1���13. https://doi.org/10.1155/2017/9756429
[DOI: 10.1155/2017/9756429]
Arndt MA, Battaglia V, Parisi E et al (2009) The arginine metabolite agmatine protects mitochondrial function and confers resistance to cellular apoptosis. Am J Physiol Physiol 296:C1411���C1419. https://doi.org/10.1152/ajpcell.00529.2008
[DOI: 10.1152/ajpcell.00529.2008]
Aroda VR, Knowler WC, Crandall JP et al (2017) Metformin for diabetes prevention: Insights gained from the diabetes prevention program/diabetes prevention program outcomes study. Diabetologia 60:1601���1611. https://doi.org/10.1007/s00125-017-4361-9
[DOI: 10.1007/s00125-017-4361-9]
Asadi-Pooya AA (2018) Lennox-Gastaut syndrome: A comprehensive review. Neurol Sci 39:403���414. https://doi.org/10.1007/s10072-017-3188-y
[DOI: 10.1007/s10072-017-3188-y]
Aslam M, Ladilov Y (2022) Emerging Role of cAMP/AMPK Signaling Cells 11:308. https://doi.org/10.3390/cells11020308
[DOI: 10.3390/cells11020308]
Aydin S, Toprak ��, ��engelli ��nel �� et al (2022) The investigation of the effects of agmatine in pentylenetetrazole-induced epilepsy model in mice and the contribution of nitric oxide. Kahramanmara�� S��t���� ��mam ��niversitesi T��p Fak��ltesi Derg 17:46���52. https://doi.org/10.17517/ksutfd.831948
[DOI: 10.17517/ksutfd.831948]
Baeza-Flores GDC, Guzm��n-Priego CG, Parra-Flores LI et al (2020) Metformin: A prospective alternative for the treatment of chronic pain. Front Pharmacol 11:558474. https://doi.org/10.3389/fphar.2020.558474
[DOI: 10.3389/fphar.2020.558474]
Bahremand A, Ziai P, Khodadad TK et al (2010) Agmatine enhances the anticonvulsant effect of lithium chloride on pentylenetetrazole-induced seizures in mice: Involvement of L-arginine/nitric oxide pathway. Epilepsy Behav 18:186���192. https://doi.org/10.1016/j.yebeh.2010.04.014
[DOI: 10.1016/j.yebeh.2010.04.014]
Bahremand A, Ziai P, Payandemehr B et al (2011) Additive anticonvulsant effects of agmatine and lithium chloride on pentylenetetrazole-induced clonic seizure in mice: Involvement of ��2-adrenoceptor. Eur J Pharmacol 666:93���99. https://doi.org/10.1016/j.ejphar.2011.05.043
[DOI: 10.1016/j.ejphar.2011.05.043]
Bahremand T, Payandemehr P, Riazi K et al (2018) Modulation of the anticonvulsant effect of swim stress by agmatine. Epilepsy Behav 78:142���148. https://doi.org/10.1016/j.yebeh.2017.11.005
[DOI: 10.1016/j.yebeh.2017.11.005]
Baker C, Retzik-Stahr C, Singh V et al (2021) Should metformin remain the first-line therapy for treatment of type 2 diabetes? Ther Adv Endocrinol Metab 12:204201882098022. https://doi.org/10.1177/2042018820980225
[DOI: 10.1177/2042018820980225]
Bartolini E, Ferrari AR, Fiori S, Della Vecchia S (2023) Glycaemic imbalances in seizures and epilepsy of paediatric age: A literature review. J Clin Med 12:2580. https://doi.org/10.3390/jcm12072580
[DOI: 10.3390/jcm12072580]
Baviera M, Roncaglioni MC, Tettamanti M et al (2017) Diabetes mellitus: A risk factor for seizures in the elderly���a population-based study. Acta Diabetol 54:863���870. https://doi.org/10.1007/s00592-017-1011-0
[DOI: 10.1007/s00592-017-1011-0]
Bence AK, Worthen DR, Stables JP, Crooks PA (2003) An in vivo evaluation of the antiseizure activity and acute neurotoxicity of agmatine. Pharmacol Biochem Behav 74:771���775. https://doi.org/10.1016/S0091-3057(02)01079-1
[DOI: 10.1016/S0091-3057(02)01079-1]
Berg AT, Berkovic SF, Brodie MJ et al (2010) Revised terminology and concepts for organization of seizures and epilepsies: Report of the ILAE commission on classification and terminology, 2005���2009. Epilepsia 51:676���685. https://doi.org/10.1111/j.1528-1167.2010.02522.x
[DOI: 10.1111/j.1528-1167.2010.02522.x]
Beysel S, Unsal IO, Kizilgul M et al (2018) The effects of metformin in type 1 diabetes mellitus. BMC Endocr Disord 18:1. https://doi.org/10.1186/s12902-017-0228-9
[DOI: 10.1186/s12902-017-0228-9]
Bharath LP, Agrawal M, McCambridge G et al (2020) Metformin enhances autophagy and normalizes mitochondrial function to alleviate aging-associated inflammation. Cell Metab 32:44-55.e6. https://doi.org/10.1016/j.cmet.2020.04.015
[DOI: 10.1016/j.cmet.2020.04.015]
Bhutada P, Mundhada Y, Humane V et al (2012) Agmatine, an endogenous ligand of imidazoline receptor protects against memory impairment and biochemical alterations in streptozotocin-induced diabetic rats. Prog Neuro-Psychopharmacology Biol Psychiatry 37:96���105. https://doi.org/10.1016/j.pnpbp.2012.01.009
[DOI: 10.1016/j.pnpbp.2012.01.009]
Bila I, Dzydzan O, Brodyak I, Sybirna N (2019) Agmatine prevents oxidative-nitrative stress in blood leukocytes under streptozotocin-induced diabetes mellitus. Open Life Sci 14:299���310. https://doi.org/10.1515/biol-2019-0033
[DOI: 10.1515/biol-2019-0033]
Bisulli F, Muccioli L, D���Orsi G et al (2019) Treatment with metformin in twelve patients with Lafora disease. Orphanet J Rare Dis 14:149. https://doi.org/10.1186/s13023-019-1132-3
[DOI: 10.1186/s13023-019-1132-3]
Bjornstad P, Sch��fer M, Truong U et al (2018) Metformin improves insulin sensitivity and vascular health in youth with type 1 diabetes mellitus. Circulation 138:2895���2907. https://doi.org/10.1161/CIRCULATIONAHA.118.035525
[DOI: 10.1161/CIRCULATIONAHA.118.035525]
Bojja SL, Medhi B, Anand S et al (2021) Metformin ameliorates the status epilepticus- induced hippocampal pathology through possible mTOR modulation. Inflammopharmacology 29:137���151. https://doi.org/10.1007/s10787-020-00782-8
[DOI: 10.1007/s10787-020-00782-8]
Brimble E, Ruzhnikov MRZ (2020) Metabolic disorders presenting with seizures in the neonatal Period. Semin Neurol 40:219���235. https://doi.org/10.1055/s-0040-1705119
[DOI: 10.1055/s-0040-1705119]
Burgos DF, Mach��o-Castello M, Iglesias-Cabeza N et al (2023) Early treatment with metformin improves neurological outcomes in lafora Disease. Neurotherapeutics 20:230���244. https://doi.org/10.1007/s13311-022-01304-w
[DOI: 10.1007/s13311-022-01304-w]
Cao G, Gong T, Du Y et al (2022) Mechanism of metformin regulation in central nervous system: Progression and future perspectives. Biomed Pharmacother 156:113686. https://doi.org/10.1016/j.biopha.2022.113686
[DOI: 10.1016/j.biopha.2022.113686]
Chang C-H, Wu H-T, Cheng K-C et al (2010) Increase of ��-endorphin secretion by agmatine is induced by activation of imidazoline I2A receptors in adrenal gland of rats. Neurosci Lett 468:297���299. https://doi.org/10.1016/j.neulet.2009.11.018
[DOI: 10.1016/j.neulet.2009.11.018]
Chen W-T, Lin Y-S, Wang Y-F, Fuh J-L (2019) Adult onset MELAS syndrome presenting as a mimic of herpes simplex encephalitis. Acta Neurol Taiwan 28(2):46���51
Cheng AYY, Lau DCW (2013) The Canadian Diabetes Association 2013 clinical practice guidelines���raising the bar and setting higher standards! Can J Diabetes 37:137���138. https://doi.org/10.1016/j.jcjd.2013.04.005
[DOI: 10.1016/j.jcjd.2013.04.005]
Chou I-C, Wang C-H, Lin W-D et al (2016) Risk of epilepsy in type 1 diabetes mellitus: A population-based cohort study. Diabetologia 59:1196���1203. https://doi.org/10.1007/s00125-016-3929-0
[DOI: 10.1007/s00125-016-3929-0]
Ciampi E, Uribe-San-Martin R, Soler B et al (2020) Prevalence of comorbidities in multiple sclerosis and impact on physical disability according to disease phenotypes. Mult Scler Relat Disord 46:102565. https://doi.org/10.1016/j.msard.2020.102565
[DOI: 10.1016/j.msard.2020.102565]
Corcoran C, Jacobs TF (2024) Metformin
Cripps MJ, Bagnati M, Jones TA et al (2020) Identification of a subset of trace amine-associated receptors and ligands as potential modulators of insulin secretion. Biochem Pharmacol 171:113685. https://doi.org/10.1016/j.bcp.2019.113685
[DOI: 10.1016/j.bcp.2019.113685]
Cui H, Lee JH, Kim JY et al (2012) The neuroprotective effect of agmatine after focal cerebral ischemia in diabetic rats. J Neurosurg Anesthesiol 24:39���50. https://doi.org/10.1097/ANA.0b013e318235af18
[DOI: 10.1097/ANA.0b013e318235af18]
Dafoulas GE, Toulis KA, Mccorry D et al (2017) Type 1 diabetes mellitus and risk of incident epilepsy: A population-based, open-cohort study. Diabetologia 60:258���261. https://doi.org/10.1007/s00125-016-4142-x
[DOI: 10.1007/s00125-016-4142-x]
del Rubio Osornio M, C, Custodio Ram��rez V, Calder��n G��mez D, et al (2018) Metformin plus caloric restriction show anti-epileptic effects mediated by mTOR pathway inhibition. Cell Mol Neurobiol 38:1425���1438. https://doi.org/10.1007/s10571-018-0611-8
[DOI: 10.1007/s10571-018-0611-8]
Demar�� S, Kothari A, Calcutt NA, Fernyhough P (2021) Metformin as a potential therapeutic for neurological disease: Mobilizing AMPK to repair the nervous system. Expert Rev Neurother 21:45���63. https://doi.org/10.1080/14737175.2021.1847645
[DOI: 10.1080/14737175.2021.1847645]
Ding Y, Zhou Y, Ling P et al (2021) Metformin in cardiovascular diabetology: A focused review of its impact on endothelial function. Theranostics 11:9376���9396. https://doi.org/10.7150/thno.64706
[DOI: 10.7150/thno.64706]
Dodd S, Sominsky L, Siskind D et al (2022) The role of metformin as a treatment for neuropsychiatric illness. Eur Neuropsychopharmacol 64:32���43. https://doi.org/10.1016/j.euroneuro.2022.09.002
[DOI: 10.1016/j.euroneuro.2022.09.002]
Dong Y, Qi Y, Jiang H et al (2023) The development and benefits of metformin in various diseases. Front Med 17:388���431. https://doi.org/10.1007/s11684-023-0998-6
[DOI: 10.1007/s11684-023-0998-6]
Du M-R, Gao Q-Y, Liu C-L et al (2022) Exploring the pharmacological potential of metformin for neurodegenerative diseases. Front Aging Neurosci 14:838173. https://doi.org/10.3389/fnagi.2022.838173
[DOI: 10.3389/fnagi.2022.838173]
Dutta S, Shah RB, Singhal S et al (2023) Metformin: A review of potential mechanism and therapeutic utility beyond diabetes. Drug Des Devel Ther 17:1907���1932. https://doi.org/10.2147/DDDT.S409373
[DOI: 10.2147/DDDT.S409373]
Feng Y, LeBlanc MH, Regunathan S (2005) Agmatine reduces extracellular glutamate during pentylenetetrazole-induced seizures in rat brain: A potential mechanism for the anticonvulsive effects. Neurosci Lett 390:129���133. https://doi.org/10.1016/j.neulet.2005.08.008
[DOI: 10.1016/j.neulet.2005.08.008]
Feng J, Wang X, Ye X et al (2022) Mitochondria as an important target of metformin: The mechanism of action, toxic and side effects, and new therapeutic applications. Pharmacol Res 177:106114. https://doi.org/10.1016/j.phrs.2022.106114
[DOI: 10.1016/j.phrs.2022.106114]
Ferents IV, Brodyak IV, Lyuta MY et al (2016) Inhibiting effect of agmatine on genetically programmed death of leukocytes in experimental diabetes mellitus. Tsitol Genet 50:50���61 ( https://doi.org/30480417 )
[PMID: 30480417]
Flory J, Lipska K (2019) Metformin in 2019. JAMA 321:1926. https://doi.org/10.1001/jama.2019.3805
[DOI: 10.1001/jama.2019.3805]
Fordington S, Manford M (2020) A review of seizures and epilepsy following traumatic brain injury. J Neurol 267:3105���3111. https://doi.org/10.1007/s00415-020-09926-w
[DOI: 10.1007/s00415-020-09926-w]
Freitas AE, Bettio LEB, Neis VB et al (2014) Agmatine abolishes restraint stress-induced depressive-like behavior and hippocampal antioxidant imbalance in mice. Prog Neuro-Psychopharmacology Biol Psychiatry 50:143���150. https://doi.org/10.1016/j.pnpbp.2013.12.012
[DOI: 10.1016/j.pnpbp.2013.12.012]
Ganelin-Cohen E, Modan-Moses D, Hemi R et al (2016) Epilepsy and behavioral changes, type 1 diabetes mellitus and a high titer of glutamic acid decarboxylase antibodies. Pediatr Diabetes 17:617���622. https://doi.org/10.1111/pedi.12346
[DOI: 10.1111/pedi.12346]
Haddadi N-S, Shakiba S, Afshari K et al (2020) Possible involvement of nitric oxide in the antipruritic effect of metformin on chloroquine-induced scratching in mice. Dermatology 236:151���159. https://doi.org/10.1159/000501583
[DOI: 10.1159/000501583]
Hamal C, Velugoti LSDR, Tabowei G et al (2022) Metformin for the improvement of comorbid depression symptoms in diabetic patients: A systematic review. Cureus 14:e28609. https://doi.org/10.7759/cureus.28609
[DOI: 10.7759/cureus.28609]
Han N, Yu L, Song Z et al (2015) Agmatine protects m��ller cells from high-concentration glucose-induced cell damage via N-methyl-D-aspartic acid receptor inhibition. Mol Med Rep 12:1098���1106. https://doi.org/10.3892/mmr.2015.3540
[DOI: 10.3892/mmr.2015.3540]
Hanaya R, Arita K (2016) The new antiepileptic drugs: Their neuropharmacology and clinical indications. Neurol Med Chir (tokyo) 56:205���220. https://doi.org/10.2176/nmc.ra.2015-0344
[DOI: 10.2176/nmc.ra.2015-0344]
Harby SA, Khalil NA, El-Sayed NS et al (2023) Implications of BCRP modulation on PTZ-induced seizures in mice: Role of ko143 and metformin as adjuvants to lamotrigine. Naunyn Schmiedebergs Arch Pharmacol Online Ahe. https://doi.org/10.1007/s00210-023-02485-7
[DOI: 10.1007/s00210-023-02485-7]
Holmes D (2016) Link between T1DM and epilepsy strengthens. Nat Rev Endocrinol 12:311���311. https://doi.org/10.1038/nrendo.2016.60
[DOI: 10.1038/nrendo.2016.60]
Hostalek U, Campbell I (2021) Metformin for diabetes prevention: Update of the evidence base. Curr Med Res Opin 37:1705���1717. https://doi.org/10.1080/03007995.2021.1955667
[DOI: 10.1080/03007995.2021.1955667]
Huang Q-Y, Yao F, Zhou C-R et al (2020) Role of gut microbiome in regulating the effectiveness of metformin in reducing colorectal cancer in type 2 diabetes. World J Clin Cases 8:6213���6228. https://doi.org/10.12998/wjcc.v8.i24.6213
[DOI: 10.12998/wjcc.v8.i24.6213]
Hussein AM, Eldosoky M, El-Shafey M et al (2019) Effects of metformin on apoptosis and ��-synuclein in a rat model of pentylenetetrazole-induced epilepsy. Can J Physiol Pharmacol 97:37���46. https://doi.org/10.1139/cjpp-2018-0266
[DOI: 10.1139/cjpp-2018-0266]
Hussein A, Ghonimy A, Jiang H et al (2023) LC/MS analysis of mushrooms provided new insights into dietary management of diabetes mellitus in rats. Food Sci Nutr 11:2321���2335. https://doi.org/10.1002/fsn3.3236
[DOI: 10.1002/fsn3.3236]
Hwang S-L, Liu I-M, Tzeng T-F, Cheng J-T (2005) Activation of imidazoline receptors in adrenal gland to lower plasma glucose in streptozotocin-induced diabetic rats. Diabetologia 48:767���775. https://doi.org/10.1007/s00125-005-1698-2
[DOI: 10.1007/s00125-005-1698-2]
Induri SNR, Kansara P, Thomas SC et al (2022) The gut microbiome, metformin, and aging. Annu Rev Pharmacol Toxicol 62:85���108. https://doi.org/10.1146/annurev-pharmtox-051920-093829
[DOI: 10.1146/annurev-pharmtox-051920-093829]
Inoue Y, Masuda T, Misumi Y et al (2021) Metformin attenuates vascular pathology by increasing expression of insulin-degrading enzyme in a mixed model of cerebral amyloid angiopathy and type 2 diabetes mellitus. Neurosci Lett 762:136136. https://doi.org/10.1016/j.neulet.2021.136136
[DOI: 10.1016/j.neulet.2021.136136]
Jamal M, Azam M, Simjee SU (2024) Combination of metformin and sub-therapeutic dose of valproic acid prevent valproic acid-induced toxicity in animal model of epilepsy. Drug Chem Toxicol 47:287���295. https://doi.org/10.1080/01480545.2023.2168689
[DOI: 10.1080/01480545.2023.2168689]
Jia Y, Cui R, Wang C et al (2020) Metformin protects against intestinal ischemia-reperfusion injury and cell pyroptosis via TXNIP-NLRP3-GSDMD pathway. Redox Biol 32:101534. https://doi.org/10.1016/j.redox.2020.101534
[DOI: 10.1016/j.redox.2020.101534]
Jou S-B, Liu I-M, Cheng J-T (2004) Activation of imidazoline receptor by agmatine to lower plasma glucose in streptozotocin-induced diabetic rats. Neurosci Lett 358:111���114. https://doi.org/10.1016/j.neulet.2004.01.011
[DOI: 10.1016/j.neulet.2004.01.011]
Jung H-J, Jeon Y-H, Bokara KK et al (2013) Agmatine promotes the migration of murine brain endothelial cells via multiple signaling pathways. Life Sci 92:42���50. https://doi.org/10.1016/j.lfs.2012.10.018
[DOI: 10.1016/j.lfs.2012.10.018]
Jurca CM, Kozma K, Petchesi CD et al (2023) Tuberous sclerosis, type II diabetes mellitus and the PI3K/AKT/mTOR signaling pathways���case report and literature review. Genes (basel) 14:433. https://doi.org/10.3390/genes14020433
[DOI: 10.3390/genes14020433]
Kale M, Nimje N, Aglawe MM et al (2020) Agmatine modulates anxiety and depression-like behaviour in diabetic insulin-resistant rats. Brain Res 1747:147045. https://doi.org/10.1016/j.brainres.2020.147045
[DOI: 10.1016/j.brainres.2020.147045]
Kang S, Kim C-H, Jung H et al (2017) Agmatine ameliorates type 2 diabetes induced-Alzheimer���s disease-like alterations in high-fat diet-fed mice via reactivation of blunted insulin signalling. Neuropharmacology 113:467���479. https://doi.org/10.1016/j.neuropharm.2016.10.029
[DOI: 10.1016/j.neuropharm.2016.10.029]
Karami F, Jamaati H, Coleman-Fuller N et al (2023) Is metformin neuroprotective against diabetes mellitus-induced neurodegeneration? An updated graphical review of molecular basis. Pharmacol Reports 75:511���543. https://doi.org/10.1007/s43440-023-00469-1
[DOI: 10.1007/s43440-023-00469-1]
Keezer MR, Novy J, Sander JW (2015) Type 1 diabetes mellitus in people with pharmacoresistant epilepsy: Prevalence and clinical characteristics. Epilepsy Res 115:55���57. https://doi.org/10.1016/j.eplepsyres.2015.05.008
[DOI: 10.1016/j.eplepsyres.2015.05.008]
Kim JM, Lee JE, Cheon SY et al (2016) The anti-inflammatory effects of agmatine on transient focal cerebral ischemia in diabetic rats. J Neurosurg Anesthesiol 28:203���213. https://doi.org/10.1097/ANA.0000000000000195
[DOI: 10.1097/ANA.0000000000000195]
Kirchner A, Vel����kov�� J, Vel����ek L (2006) Differential effects of low glucose concentrations on seizures and epileptiform activity in vivo and in vitro. Eur J Neurosci 23:1512���1522. https://doi.org/10.1111/j.1460-9568.2006.04665.x
[DOI: 10.1111/j.1460-9568.2006.04665.x]
Ko WC, Liu I-M, Chung H-H, Cheng J-T (2008) Activation of I2-imidazoline receptors may ameliorate insulin resistance in fructose-rich chow-fed rats. Neurosci Lett 448:90���93. https://doi.org/10.1016/j.neulet.2008.10.002
[DOI: 10.1016/j.neulet.2008.10.002]
Kotagale N, Rahangdale S, Borkar A et al (2021) Possible involvement of agmatine in neuropharmacological actions of metformin in diabetic mice. Eur J Pharmacol 907:174255. https://doi.org/10.1016/j.ejphar.2021.174255
[DOI: 10.1016/j.ejphar.2021.174255]
LaMoia TE, Shulman GI (2021) Cellular and molecular mechanisms of metformin action. Endocr Rev 42:77���96. https://doi.org/10.1210/endrev/bnaa023
[DOI: 10.1210/endrev/bnaa023]
Lee CB, Chae SU, Jo SJ et al (2021) The relationship between the gut microbiome and metformin as a key for treating type 2 diabetes mellitus. Int J Mol Sci 22:3566. https://doi.org/10.3390/ijms22073566
Leech T, Chattipakorn N, Chattipakorn SC (2019) The beneficial roles of metformin on the brain with cerebral ischaemia/reperfusion injury. Pharmacol Res 146:104261. https://doi.org/10.1016/j.phrs.2019.104261
[DOI: 10.1016/j.phrs.2019.104261]
Li Y, Cheng K-C, Asakawa A et al (2015) Activation of imidazoline-I3 receptors ameliorates pancreatic damage. Clin Exp Pharmacol Physiol 42:964���971. https://doi.org/10.1111/1440-1681.12441
[DOI: 10.1111/1440-1681.12441]
Li C-C, Chang C-C, Cherng Y-G et al (2021a) Risk and outcomes of diabetes in patients with epilepsy. Sci Rep 11:18888. https://doi.org/10.1038/s41598-021-98340-x
[DOI: 10.1038/s41598-021-98340-x]
Li X, Lin J, Hua Y et al (2021b) Agmatine alleviates epileptic seizures and hippocampal neuronal damage by inhibiting gasdermin D-mediated pyroptosis. Front Pharmacol 12:627557. https://doi.org/10.3389/fphar.2021.627557
[DOI: 10.3389/fphar.2021.627557]
Li N, Zhou T, Fei E (2022) Actions of metformin in the brain: A new perspective of metformin treatments in related neurological disorders. Int J Mol Sci 23:8281. https://doi.org/10.3390/ijms23158281
[DOI: 10.3390/ijms23158281]
Liao N-Y, Lin L-Y, Chen C et al (2022) Transient postictal hyperglycemia as a diagnostic clue of mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes. Acta Neurol Taiwan 31(2):79���83
Lin H, Zhou X, Chen X et al (2020) tRNA methyltransferase 10 homologue A (TRMT10A) mutation in a Chinese patient with diabetes, insulin resistance, intellectual deficiency and microcephaly. BMJ Open Diabetes Res Care 8:e001601. https://doi.org/10.1136/bmjdrc-2020-001601
[DOI: 10.1136/bmjdrc-2020-001601]
Liu C, Wu D, Zheng X et al (2015) Efficacy and safety of metformin for patients with type 1 diabetes mellitus: A meta-analysis. Diabetes Technol Ther 17:142���148. https://doi.org/10.1089/dia.2014.0190
[DOI: 10.1089/dia.2014.0190]
Livingstone R, Boyle JG, Petrie JR (2017) A new perspective on metformin therapy in type 1 diabetes. Diabetologia 60:1594���1600. https://doi.org/10.1007/s00125-017-4364-6
[DOI: 10.1007/s00125-017-4364-6]
Lv Z, Guo Y (2020) Metformin and its benefits for various diseases. Front Endocrinol (lausanne) 11:191. https://doi.org/10.3389/fendo.2020.00191
[DOI: 10.3389/fendo.2020.00191]
Madiraju AK, Qiu Y, Perry RJ et al (2018) Metformin inhibits gluconeogenesis via a redox-dependent mechanism in vivo. Nat Med 24:1384���1394. https://doi.org/10.1038/s41591-018-0125-4
[DOI: 10.1038/s41591-018-0125-4]
Mahmoud AA, Abdelmagid T, AlGhofely M et al (2020) Epilepsy in patients with insulin-dependent diabetes and relation to glutamic acid decarboxylase 65. Neurosciences 25:200���204. https://doi.org/10.17712/nsj.2020.3.20190057
[DOI: 10.17712/nsj.2020.3.20190057]
Malekpour M, Salarikia SR, Kashkooli M, Asadi-Pooya AA (2023) The genetic link between systemic autoimmune disorders and temporal lobe epilepsy: A bioinformatics study. Epilepsia Open 8:509���516. https://doi.org/10.1002/epi4.12727
[DOI: 10.1002/epi4.12727]
Mastrangelo M, Tromba V, Silvestri F, Costantino F (2019) Epilepsy in children with type 1 diabetes mellitus: Pathophysiological basis and clinical hallmarks. Eur J Paediatr Neurol 23:240���247. https://doi.org/10.1016/j.ejpn.2018.12.006
[DOI: 10.1016/j.ejpn.2018.12.006]
Mathew TK, Zubair M, Tadi P (2024) Blood Glucose Monitoring
Mehrabi S, Sanadgol N, Barati M et al (2018) Evaluation of metformin effects in the chronic phase of spontaneous seizures in pilocarpine model of temporal lobe epilepsy. Metab Brain Dis 33:107���114. https://doi.org/10.1007/s11011-017-0132-z
[DOI: 10.1007/s11011-017-0132-z]
Milosevic K, Stevanovic I, Bozic ID et al (2022) Agmatine mitigates inflammation-related oxidative stress in BV-2 Cells by inducing a pre-adaptive response. Int J Mol Sci 23:3561. https://doi.org/10.3390/ijms23073561
[DOI: 10.3390/ijms23073561]
Mohamed MAE, Abdel-Rahman RF, Mahmoud SS et al (2020) Metformin and trimetazidine ameliorate diabetes-induced cognitive impediment in status epileptic rats. Epilepsy Behav 104:106893. https://doi.org/10.1016/j.yebeh.2019.106893
[DOI: 10.1016/j.yebeh.2019.106893]
Mohammed I, Hollenberg MD, Ding H, Triggle CR (2021) A critical review of the evidence that metformin is a putative anti-aging drug that enhances healthspan and extends lifespan. Front Endocrinol (lausanne) 12:718942. https://doi.org/10.3389/fendo.2021.718942
[DOI: 10.3389/fendo.2021.718942]
Moosavi M, Zarifkar AH, Farbood Y et al (2014) Agmatine protects against intracerebroventricular streptozotocin-induced water maze memory deficit, hippocampal apoptosis and Akt/GSK3�� signaling disruption. Eur J Pharmacol 736:107���114. https://doi.org/10.1016/j.ejphar.2014.03.041
[DOI: 10.1016/j.ejphar.2014.03.041]
Moretti M, Matheus FC, de Oliveira PA et al (2014) Role of agmatine in neurodegenerative diseases and epilepsy. Front Biosci (elite Ed) 6:341���359. https://doi.org/10.2741/E710
[DOI: 10.2741/E710]
Nader M, Gamiel N, El-Kashef H, Zaghloul M (2016) Effect of agmatine on experimental vascular endothelial dysfunction. Hum Exp Toxicol 35:573���582. https://doi.org/10.1177/0960327115597311
[DOI: 10.1177/0960327115597311]
Nafisa A, Gray SG, Cao Y et al (2018) Endothelial function and dysfunction: Impact of metformin. Pharmacol Ther 192:150���162. https://doi.org/10.1016/j.pharmthera.2018.07.007
[DOI: 10.1016/j.pharmthera.2018.07.007]
Nandini HS, Paudel YN, Krishna KL (2019) Envisioning the neuroprotective effect of Metformin in experimental epilepsy: A portrait of molecular crosstalk. Life Sci 233:116686. https://doi.org/10.1016/j.lfs.2019.116686
[DOI: 10.1016/j.lfs.2019.116686]
Neis VB, Rosa PB, Olescowicz G, Rodrigues ALS (2017) Therapeutic potential of agmatine for CNS disorders. Neurochem Int 108:318���331. https://doi.org/10.1016/j.neuint.2017.05.006
[DOI: 10.1016/j.neuint.2017.05.006]
Nesci V, Russo E, Arcidiacono B et al (2020) Metabolic alterations predispose to seizure development in high-fat diet-treated mice: The role of metformin. Mol Neurobiol 57:4778���4789. https://doi.org/10.1007/s12035-020-02062-6
[DOI: 10.1007/s12035-020-02062-6]
Neumann NR, Thompson DC, Vasiliou V (2021) AMPK activators for the prevention and treatment of neurodegenerative diseases. Expert Opin Drug Metab Toxicol 17:1199���1210. https://doi.org/10.1080/17425255.2021.1991308
[DOI: 10.1080/17425255.2021.1991308]
Niu C, Chen Z, Kim KT et al (2019) Metformin alleviates hyperglycemia-induced endothelial impairment by downregulating autophagy via the hedgehog pathway. Autophagy 15:843���870. https://doi.org/10.1080/15548627.2019.1569913
[DOI: 10.1080/15548627.2019.1569913]
��zyazgan S, Bicakci B, Ozaydin A et al (2003) The effect of agmatine on the vascular reactivity in streptozotocin-diabetic rats. Pharmacol Res 48:133���138. https://doi.org/10.1016/S1043-6618(03)00101-4
[DOI: 10.1016/S1043-6618(03)00101-4]
Pascale A, Marchesi N, Govoni S et al (2019) The role of gut microbiota in obesity, diabetes mellitus, and effect of metformin: new insights into old diseases. Curr Opin Pharmacol 49:1���5. https://doi.org/10.1016/j.coph.2019.03.011
[DOI: 10.1016/j.coph.2019.03.011]
Payandemehr B, Rahimian R, Bahremand A et al (2013) Role of nitric oxide in additive anticonvulsant effects of agmatine and morphine. Physiol Behav 118:52���57. https://doi.org/10.1016/j.physbeh.2013.05.022
[DOI: 10.1016/j.physbeh.2013.05.022]
Pearl PL, Bennett HD, Khademian Z (2005) Seizures and metabolic disease. Curr Neurol Neurosci Rep 5:127���133. https://doi.org/10.1007/s11910-005-0010-7
[DOI: 10.1007/s11910-005-0010-7]
Pernicova I, Korbonits M (2014) Metformin���mode of action and clinical implications for diabetes and cancer. Nat Rev Endocrinol 10:143���156. https://doi.org/10.1038/nrendo.2013.256
[DOI: 10.1038/nrendo.2013.256]
Perucca P, Scheffer IE, Kiley M (2018) The management of epilepsy in children and adults. Med J Aust 208:226���233. https://doi.org/10.5694/mja17.00951
[DOI: 10.5694/mja17.00951]
Phoswa WN, Mokgalaboni K (2023) Immunological imbalances associated with epileptic seizures in type 2 diabetes mellitus. Brain Sci 13:732. https://doi.org/10.3390/brainsci13050732
[DOI: 10.3390/brainsci13050732]
Pisani F, Spagnoli C, Falsaperla R et al (2021) Seizures in the neonate: A review of etiologies and outcomes. Seizure 85:48���56. https://doi.org/10.1016/j.seizure.2020.12.023
[DOI: 10.1016/j.seizure.2020.12.023]
Potter WB, O���Riordan KJ, Barnett D et al (2010) Metabolic regulation of neuronal plasticity by the energy sensor AMPK. PLoS ONE 5:e8996. https://doi.org/10.1371/journal.pone.0008996
[DOI: 10.1371/journal.pone.0008996]
Prattichizzo F, Giuliani A, Mens�� E et al (2018) Pleiotropic effects of metformin: Shaping the microbiome to manage type 2 diabetes and postpone ageing. Ageing Res Rev 48:87���98. https://doi.org/10.1016/j.arr.2018.10.003
[DOI: 10.1016/j.arr.2018.10.003]
Pryor R, Norvaisas P, Marinos G et al (2019) Host-microbe-drug-nutrient screen identifies bacterial effectors of metformin therapy. Cell 178:1299-1312.e29. https://doi.org/10.1016/j.cell.2019.08.003
[DOI: 10.1016/j.cell.2019.08.003]
Ramakrishnan R, Appleton R (2012) Study of prevalence of epilepsy in children with type 1 diabetes mellitus. Seizure 21:292���294. https://doi.org/10.1016/j.seizure.2012.01.003
[DOI: 10.1016/j.seizure.2012.01.003]
Ramos-Riera KP, P��rez-Severiano F, L��pez-Meraz ML (2023) Oxidative stress: A common imbalance in diabetes and epilepsy. Metab Brain Dis 38:767���782. https://doi.org/10.1007/s11011-022-01154-7
[DOI: 10.1007/s11011-022-01154-7]
Rho J, Sankar R, Stafstrom CE (2010) Epilepsy mechanisms, models, and translational perspectives. CRC Press
[DOI: 10.1201/9781420085594]
Rond��n LJ, Farges MC, Davin N et al (2018) l-Arginine supplementation prevents allodynia and hyperalgesia in painful diabetic neuropathic rats by normalizing plasma nitric oxide concentration and increasing plasma agmatine concentration. Eur J Nutr 57:2353���2363. https://doi.org/10.1007/s00394-017-1508-x
[DOI: 10.1007/s00394-017-1508-x]
Rosenberg ML, Tohidi V, Sherwood K et al (2020) Evidence for dietary agmatine sulfate effectiveness in neuropathies associated with painful small fiber neuropathy. A pilot open-label consecutive case series study. Nutrients 12:576. https://doi.org/10.3390/nu12020576
[DOI: 10.3390/nu12020576]
Rotermund C, Machetanz G, Fitzgerald JC (2018) The therapeutic potential of metformin in neurodegenerative diseases. Front Endocrinol (lausanne) 9:400. https://doi.org/10.3389/fendo.2018.00400
[DOI: 10.3389/fendo.2018.00400]
Saha P, Panda S, Holkar A et al (2023) Neuroprotection by agmatine: Possible involvement of the gut microbiome? Ageing Res Rev 91:102056. https://doi.org/10.1016/j.arr.2023.102056
[DOI: 10.1016/j.arr.2023.102056]
Salvati KA, Ritger ML, Davoudian PA et al (2022) AMPK-mediated potentiation of GABAergic signalling drives hypoglycaemia-provoked spike-wave seizures. Brain 145:2332���2346. https://doi.org/10.1093/brain/awac037
[DOI: 10.1093/brain/awac037]
Sambe T, Mason RP, Dawoud H et al (2018) Metformin treatment decreases nitroxidative stress, restores nitric oxide bioavailability and endothelial function beyond glucose control. Biomed Pharmacother 98:149���156. https://doi.org/10.1016/j.biopha.2017.12.023
[DOI: 10.1016/j.biopha.2017.12.023]
Sanchez-Rangel E, Inzucchi SE (2017) Metformin: Clinical use in type 2 diabetes. Diabetologia 60:1586���1593. https://doi.org/10.1007/s00125-017-4336-x
[DOI: 10.1007/s00125-017-4336-x]
Sander JW, Novy J, Keezer MR (2016) The intriguing relationship between epilepsy and type 1 diabetes mellitus. Diabetologia 59:1569���1570. https://doi.org/10.1007/s00125-016-3982-8
[DOI: 10.1007/s00125-016-3982-8]
Sanz P, Serratosa JM, S��nchez MP (2021) Beneficial effects of metformin on the central nervous system, with a focus on epilepsy and lafora disease. Int J Mol Sci 22:5351. https://doi.org/10.3390/ijms22105351
[DOI: 10.3390/ijms22105351]
Sapra A, Bhandari P (2023) Diabetes
Satriano J (2004) Arginine pathways and the inflammatory response: Interregulation of nitric oxide and polyamines: Review article. Amino Acids 26:321���329. https://doi.org/10.1007/s00726-004-0078-4
[DOI: 10.1007/s00726-004-0078-4]
Schober E, Otto KP, Dost A et al (2012) Association of epilepsy and type 1 diabetes mellitus in children and adolescents: Is there an increased risk for diabetic ketoacidosis? J Pediatr 160:662-666.e1. https://doi.org/10.1016/j.jpeds.2011.09.054
[DOI: 10.1016/j.jpeds.2011.09.054]
Sikorskaya K, Zarzecka I, Ejikeme U, Russell J (2021) The use of metformin as an add-on therapy to insulin in the treatment of poorly controlled type 1 diabetes mellitus in adolescents. Metab Open 9:100080. https://doi.org/10.1016/j.metop.2021.100080
[DOI: 10.1016/j.metop.2021.100080]
Singh T, Bagga N, Kaur A et al (2017) Agmatine for combined treatment of epilepsy, depression and cognitive impairment in chronic epileptic animals. Biomed Pharmacother 92:720���725. https://doi.org/10.1016/j.biopha.2017.05.085
[DOI: 10.1016/j.biopha.2017.05.085]
Singh R, Sarangi SC, Singh S, Tripathi M (2022) A review on role of metformin as a potential drug for epilepsy treatment and modulation of epileptogenesis. Seizure 101:253���261. https://doi.org/10.1016/j.seizure.2022.09.003
[DOI: 10.1016/j.seizure.2022.09.003]
Song J, Hur BE, Bokara KK et al (2014) Agmatine improves cognitive dysfunction and prevents cell death in a streptozotocin-induced alzheimer rat model. Yonsei Med J 55:689. https://doi.org/10.3349/ymj.2014.55.3.689
[DOI: 10.3349/ymj.2014.55.3.689]
Song J, Lee B, Kang S et al (2016) Agmatine ameliorates high glucose-induced neuronal cell senescence by regulating the p21 and p53 Signaling. Exp Neurobiol 25:24���32. https://doi.org/10.5607/en.2016.25.1.24
[DOI: 10.5607/en.2016.25.1.24]
Steriade C, Titulaer MJ, Vezzani A et al (2021) The association between systemic autoimmune disorders and epilepsy and its clinical implications. Brain 144:372���390. https://doi.org/10.1093/brain/awaa362
[DOI: 10.1093/brain/awaa362]
Su C-H, Liu I-M, Chung H-H, Cheng J-T (2009) Activation of I2-imidazoline receptors by agmatine improved insulin sensitivity through two mechanisms in type-2 diabetic rats. Neurosci Lett 457:125���128. https://doi.org/10.1016/j.neulet.2009.03.093
[DOI: 10.1016/j.neulet.2009.03.093]
Takata F, Dohgu S, Matsumoto J et al (2013) Metformin induces up-regulation of blood���brain barrier functions by activating AMP-activated protein kinase in rat brain microvascular endothelial cells. Biochem Biophys Res Commun 433:586���590. https://doi.org/10.1016/j.bbrc.2013.03.036
[DOI: 10.1016/j.bbrc.2013.03.036]
Teng X, Brown J, Morel L (2022) Redox homeostasis involvement in the pharmacological effects of metformin in systemic lupus erythematosus. Antioxid Redox Signal 36:462���479. https://doi.org/10.1089/ars.2021.0070
[DOI: 10.1089/ars.2021.0070]
Tien N, Wu T-Y, Lin C-L et al (2023) Association of epilepsy, anti-epileptic drugs (AEDs), and type 2 diabetes mellitus (T2DM): A population-based cohort retrospective study, impact of AEDs on T2DM-related molecular pathway, and via peroxisome proliferator-activated receptor �� transactivation. Front Endocrinol (lausanne) 14:1156952. https://doi.org/10.3389/fendo.2023.1156952
[DOI: 10.3389/fendo.2023.1156952]
Top WMC, Kooy A, Stehouwer CDA (2022) Metformin: A narrative review of its potential benefits for cardiovascular disease, cancer and dementia. Pharmaceuticals 15:312. https://doi.org/10.3390/ph15030312
[DOI: 10.3390/ph15030312]
Trefts E, Shaw RJ (2021) AMPK: restoring metabolic homeostasis over space and time. Mol Cell 81:3677���3690. https://doi.org/10.1016/j.molcel.2021.08.015
[DOI: 10.1016/j.molcel.2021.08.015]
Tric�� D, Herzog RI (2017) Metabolic brain adaptations to recurrent hypoglycaemia may explain the link between type 1 diabetes mellitus and epilepsy and point towards future study and treatment options. Diabetologia 60:938���939. https://doi.org/10.1007/s00125-017-4231-5
[DOI: 10.1007/s00125-017-4231-5]
Triggle CR, Mohammed I, Bshesh K et al (2022) Metformin: Is it a drug for all reasons and diseases? Metabolism 133:155223. https://doi.org/10.1016/j.metabol.2022.155223
[DOI: 10.1016/j.metabol.2022.155223]
Tsai T-C, Lin C-H, Chung H-H et al (2014) Urinary bladder relaxation through activation of imidazoline receptors induced by agmatine is increased in diabetic rats. LUTS Low Urin Tract Symptoms 6:117���123. https://doi.org/10.1111/luts.12031
[DOI: 10.1111/luts.12031]
Turan I, Ozacmak HS, Ozacmak VH et al (2017) Agmatine attenuates intestinal ischemia and reperfusion injury by reducing oxidative stress and inflammatory reaction in rats. Life Sci 189:23���28. https://doi.org/10.1016/j.lfs.2017.08.032
[DOI: 10.1016/j.lfs.2017.08.032]
Uzbay TI (2012) The pharmacological importance of agmatine in the brain. Neurosci Biobehav Rev 36:502���519. https://doi.org/10.1016/j.neubiorev.2011.08.006
[DOI: 10.1016/j.neubiorev.2011.08.006]
Vallianou NG, Stratigou T, Tsagarakis S (2019) Metformin and gut microbiota: Their interactions and their impact on diabetes. Hormones 18:141���144. https://doi.org/10.1007/s42000-019-00093-w
[DOI: 10.1007/s42000-019-00093-w]
Valverde AP, Camargo A, Rodrigues ALS (2021) Agmatine as a novel candidate for rapid-onset antidepressant response. World J Psychiatry 11:981���996. https://doi.org/10.5498/wjp.v11.i11.981
[DOI: 10.5498/wjp.v11.i11.981]
Vazifehkhah S, Ali MK, Babae JF et al (2020a) Evaluation of the ameliorative effects of oral administration of metformin on epileptogenesis in the temporal lobe epilepsy model in rats. Life Sci 257:118066. https://doi.org/10.1016/j.lfs.2020.118066
[DOI: 10.1016/j.lfs.2020.118066]
Vazifehkhah S, Khanizadeh AM, Mojarad TB, Nikbakht F (2020b) The possible role of progranulin on anti-inflammatory effects of metformin in temporal lobe epilepsy. J Chem Neuroanat 109:101849. https://doi.org/10.1016/j.jchemneu.2020.101849
[DOI: 10.1016/j.jchemneu.2020.101849]
Vazifekhah S, Nikbakht F, Hashemi P et al (2019) Dose-dependent anticonvulsant and protective effects of metformin in kainate induced temporal lobe epilepsy. J Alzheimer���s Neurodegener Dis 5:026. https://doi.org/10.24966/AND-9608/100026
[DOI: 10.24966/AND-9608/100026]
Vella S, Buetow L, Royle P et al (2010) The use of metformin in type 1 diabetes: A systematic review of efficacy. Diabetologia 53:809���820. https://doi.org/10.1007/s00125-009-1636-9
[DOI: 10.1007/s00125-009-1636-9]
Verrotti A, Scaparrotta A, Olivieri C, Chiarelli F (2012) Mechanism in endocrinology: Seizures and type 1 diabetes mellitus: Current state of knowledge. Eur J Endocrinol 167:749���758. https://doi.org/10.1530/EJE-12-0699
[DOI: 10.1530/EJE-12-0699]
Wang Y-W, He S-J, Feng X et al (2017) Metformin: A review of its potential indications. Drug Des Devel Ther 11:2421���2429. https://doi.org/10.2147/DDDT.S141675
[DOI: 10.2147/DDDT.S141675]
Wang G, Cui W, Chen S et al (2021) Metformin alleviates high glucose-induced ER stress and inflammation by inhibiting the interaction between caveolin1 and AMPK�� in rat astrocytes. Biochem Biophys Res Commun 534:908���913. https://doi.org/10.1016/j.bbrc.2020.10.075
[DOI: 10.1016/j.bbrc.2020.10.075]
Wei J, Wei Y, Huang M et al (2022) Is metformin a possible treatment for diabetic neuropathy? J Diabetes 14:658���669. https://doi.org/10.1111/1753-0407.13310
[DOI: 10.1111/1753-0407.13310]
Wiesinger H (2001) Arginine metabolism and the synthesis of nitric oxide in the nervous system. Prog Neurobiol 64:365���391. https://doi.org/10.1016/S0301-0082(00)00056-3
[DOI: 10.1016/S0301-0082(00)00056-3]
World Health Organization International Diabetes Ferderation (2006) Definition and diagnosis of diabetes mellitus and intermediate hyperglycaemia: Report of a WHO/IDF consultation
Xu HQ, Ou FY, Wang P et al (2014) High dosage of agmatine alleviates pentylenetetrazole-induced chronic seizures in rats possibly by exerting an anticonvulsive effect. Exp Ther Med 8:73���78. https://doi.org/10.3892/etm.2014.1711
[DOI: 10.3892/etm.2014.1711]
Xu W, Gao L, Li T et al (2018) Neuroprotective role of agmatine in neurological diseases. Curr Neuropharmacol 16:1296���1305. https://doi.org/10.2174/1570159X15666170808120633
[DOI: 10.2174/1570159X15666170808120633]
Yang Y, Zhu B, Zheng F et al (2017) Chronic metformin treatment facilitates seizure termination. Biochem Biophys Res Commun 484:450���455. https://doi.org/10.1016/j.bbrc.2017.01.157
[DOI: 10.1016/j.bbrc.2017.01.157]
Yimer EM, Surur A, Wondafrash DZ, Gebre AK (2019) The effect of metformin in experimentally induced animal models of epileptic seizure. Behav Neurol 2019:1���13. https://doi.org/10.1155/2019/6234758
[DOI: 10.1155/2019/6234758]
Ying M, Maruschak N, Mansur R et al (2015) Metformin: Repurposing opportunities for cognitive and mood dysfunction. CNS Neurol Disord - Drug Targets 13:1836���1845. https://doi.org/10.2174/1871527313666141130205514
[DOI: 10.2174/1871527313666141130205514]
Yun C, Xuefeng W (2013) Association between seizures and diabetes mellitus: A comprehensive review of literature. Curr Diabetes Rev 9:350���354. https://doi.org/10.2174/15733998113099990060
[DOI: 10.2174/15733998113099990060]
Zeyghami MA, Hesam E, Khadivar P et al (2020) Effects of atorvastatin and metformin on development of pentylenetetrazole-induced seizure in mice. Heliyon 6:e03761. https://doi.org/10.1016/j.heliyon.2020.e03761
[DOI: 10.1016/j.heliyon.2020.e03761]
Zhang X, Xu D, Xu P et al (2021a) Metformin improves glycemic variability in adults with type 1 diabetes mellitus: an open-label randomized control trial. Endocr Connect 10:1045���1054. https://doi.org/10.1530/EC-21-0146
[DOI: 10.1530/EC-21-0146]
Zhang D, Li J, Li T (2022) Agmatine mitigates palmitate (PA)-induced mitochondrial and metabolic dysfunction in microvascular endothelial cells. Hum Exp Toxicol 41:096032712211108. https://doi.org/10.1177/09603271221110857
[DOI: 10.1177/09603271221110857]
Zhang Y, Yuan S, Che T, He J (2021b) Agmatine and glycolipid metabolism. Zhong Nan Da Xue Xue Bao Yi Xue Ban 46:889���893. https://doi.org/10.11817/j.issn.1672-7347.2021.200351
[DOI: 10.11817/j.issn.1672-7347.2021.200351]
Zhao R, Xu X, Xu F et al (2014) Metformin protects against seizures, learning and memory impairments and oxidative damage induced by pentylenetetrazole-induced kindling in mice. Biochem Biophys Res Commun 448:414���417. https://doi.org/10.1016/j.bbrc.2014.04.130
[DOI: 10.1016/j.bbrc.2014.04.130]
Zhu X, Shen J, Feng S et al (2023) Akkermansia muciniphila, which is enriched in the gut microbiota by metformin, improves cognitive function in aged mice by reducing the proinflammatory cytokine interleukin-6. Microbiome 11:120. https://doi.org/10.1186/s40168-023-01567-1
[DOI: 10.1186/s40168-023-01567-1]
Grants
SUR/2022/005429/Science and Engineering Board (SERB), Department of Science and Technology (DST), India