Mechanical efficiency: associations with body composition and glycemic profile in healthy adults.

Elisa Marin-Couture, Louis Pérusse, Claude Bouchard, Patrick Schrauwen, Denis R Joanisse, Angelo Tremblay
Author Information
  1. Elisa Marin-Couture: Department of Kinesiology, Faculty of Medicine, PEPS, Université Laval, Quebec City, G1V 0A6, Canada.
  2. Louis Pérusse: Department of Kinesiology, Faculty of Medicine, PEPS, Université Laval, Quebec City, G1V 0A6, Canada.
  3. Claude Bouchard: Pennington Biomedical Research Center, Baton Rouge, LA, USA.
  4. Patrick Schrauwen: Department of Nutrition and Movement Sciences, Maastricht University Medical Center, Maastricht, The Netherlands.
  5. Denis R Joanisse: Department of Kinesiology, Faculty of Medicine, PEPS, Université Laval, Quebec City, G1V 0A6, Canada.
  6. Angelo Tremblay: Department of Kinesiology, Faculty of Medicine, PEPS, Université Laval, Quebec City, G1V 0A6, Canada. angelo.tremblay@kin.ulaval.ca. ORCID

Abstract

The aim of this study was to assess the association between net mechanical efficiency (NME) and body composition and glycemic profile, in middle-aged (38.3 ± 14.3 years) participants from the Quebec Family Study (QFS). Analyses were completed on a sample of 605 participants (271 males and 334 females) who performed a submaximal exercise test on an ergometer consisting of three consecutive 6-min workloads at increasing intensity during which respiratory gas exchange was assessed. The calculation of NME [power output/ (vO-vOseated before exercise)] was based on the values of the last 3 min of the first workload at a targeted power output of 30 W. Correlations between NME and dependent variables were computed separately in males and females. Associations between NME and body composition and glucose-insulin variables were assessed by comparing groups of subjects categorized in sex-specific tertiles of NME after adjustments for age. Significant negative correlations were observed between NME and body composition and glycemic profile in both sexes. Comparison across tertiles showed that individuals with high NME displayed more favorable adiposity and glycemic profiles. These differences remained significant after further adjustments for participation in vigorous physical activity, cardiorespiratory fitness, and mean exercise respiratory exchange ratio whereas most differences in glucose-insulin variables became non-significant after further adjustment for percent body fat. QFS familial data indicate that the heritability of NME reaches about 30%. In conclusion, the results of this study show that beyond aerobic fitness and physical activity-participation, mechanical efficiency is an additional activity-related variable that is independently associated with variations in body composition and glycemic profile.

Keywords

References

  1. Almasy L, Blangero J (1998) Multipoint quantitative-trait linkage analysis in general pedigrees. Am J Hum Genet 62(5):1198–1211. https://doi.org/10.1086/301844 [DOI: 10.1086/301844]
  2. Arsenault BJ, Lachance D, Lemieux I, Alméras N, Tremblay A, Bouchard C, Després J-P (2007) Visceral adipose tissue accumulation, cardiorespiratory fitness, and features of the metabolic syndrome. Arch Intern Med 167(14):1518–1525 [PMID: 17646606]
  3. Behnke, A. R., and Wilmore, J. H. 1974 Evaluation and regulation of body build and composition Englewood Cliffs
  4. Blair SN, Cheng Y, Holder JS (2001) Is physical activity or physical fitness more important in defining health benefits? Med Sci Sports Exerc 33(6 Suppl):S379-399 [PMID: 11427763]
  5. Blangero J, Williams JT, Almasy L (2001) Variance component methods for detecting complex trait loci. Adv Genet 42:151–181 [PMID: 11037320]
  6. Boss O, Samec S, Paoloni-Giacobino A, Rossier C, Dullo A, Seydoux J, Giacobino J-P (1997) Uncoupling protein-3: a new member of the mitochondiral carrier family with tissue-specific expression. FEBS Lett 408:39–42 [PMID: 9180264]
  7. Bouchard C, Tremblay A, Leblanc C, Lortie G, Savard R, Thériault G (1983) A method to assess energy expenditure in children and adults. Am J Clin Nutr 37:461–467 [PMID: 6829488]
  8. Bouchard C, Lortie G, Simoneau JA, Leblanc C, Thériault G, Tremblay A (1984) Submaximal power output in adopted and biological siblings. Ann Hum Biol 11(4):303–309. https://doi.org/10.1080/03014468400007201 [DOI: 10.1080/03014468400007201]
  9. Bouchard C, An P, Rice T, Skinner JS, Wilmore JH, Gagnon J, Rao DC (1999) Familial aggregation of vo2max response to exercise training: results from the HERITAGE Family Study. J Appl Physiol. https://doi.org/10.1152/jappl.1999.87.3.1003 [DOI: 10.1152/jappl.1999.87.3.1003]
  10. Bratteby L-E, Sandhagen B, Fan H, Samuelson G (1997) A 7-day activity diary for assessment of daily energy expenditure validated by the doubly labelled water method in adolescents. Eur J Clin Nutr 51:585–591 [PMID: 9306084]
  11. Campbell PT, Katzmarzyk PT, Malina RM, TRao, D. C., Pérusse, L., & Bouchard, C. (2001) Prediction of physical activity and physical work capacity (PWC150) in young adulthood from childhood and adolescence with consideration of parental measures. Am J Hum Biol 13:190–196 [PMID: 11460863]
  12. Cannon B, Nedergaard J (2004) Brown adipose tissue: function and physiological significance. Physiol Rev S4:277–359 [DOI: 10.1152/physrev.00015.2003]
  13. Chaput J-P, Pérusse L, Després J-P, Tremblay A, Bouchard C (2014) Findings from the quebec family study on the etiology of obesity: genetics and environmental highlights. Current Obesity Report 3:54–66. https://doi.org/10.1007/s13679-013-0086-3 [DOI: 10.1007/s13679-013-0086-3]
  14. Cypess AM, Lehman S, Williams G, Tal I, RodmanGoldfine DAB, Kahn R (2009) Identification and importance of brown adipose tissue in adult humans. N Engl J Med. https://doi.org/10.1056/NEJMoa0810780 [DOI: 10.1056/NEJMoa0810780]
  15. de Fatima Guimaraes R, Barnett TA, Reid RER, Tremblay A, Henderson M, Mathieu MÈ (2023) Determinants of mechanical efficiency trajectories from childhood to adolescence: Findings from the quality cohort. Hum Mov Sci. https://doi.org/10.1016/j.humov.2022.103040 [DOI: 10.1016/j.humov.2022.103040]
  16. De Moor MH, Liu YJ, Boomsma DI, Li J, Hamilton JJ, Hottenga JJ, Deng HW (2009) Genome-wide association study of exercise behavior in Dutch and American adults. Med Sci Sports Exerc 41(10):1887–1895. https://doi.org/10.1249/MSS.0b013e3181a2f646 [DOI: 10.1249/MSS.0b013e3181a2f646]
  17. Doherty A, Smith-Byrne K, Ferreira T, Holmes MV, Holmes C, Pulit SL, Lindgren CM (2018) GWAS identifies 14 loci for device-measured physical activity and sleep duration. Nat Commun 9(1):5257. https://doi.org/10.1038/s41467-018-07743-4 [DOI: 10.1038/s41467-018-07743-4]
  18. Doucet É, Imbeault P, St-Pierre S, Alméras N, Mauriège P, Després J-P, Tremblay A (2003) Greater than predicted decrease in energy expenditure during exercise after body weight loss in obese men. Clin Sci 105:89–95 [DOI: 10.1042/CS20020252]
  19. Ettema G, Lorås HW (2009) Efficiency in cycling: a review. Eur J Appl Physiol 106(1):1–14. https://doi.org/10.1007/s00421-009-1008-7 [DOI: 10.1007/s00421-009-1008-7]
  20. Ferland M, Després J-P, Tremblay A, Pinault S, Nadeau A, Moorjani S, Bouchard C (1989) Assessment of adipose tissue distribution by computed axial tomography in obese women: association with body density and anthropometric measurements. Br J Nutr 61:139–148 [PMID: 2706220]
  21. Franssen WMA, Massa G, Eijnde BO, Dendale P, Hansen D, Verboven K (2021) Aberrant mechanical efficiency during exercise relates to metabolic health and exercise intolerance in adolescents with obesity. Int J Environ Res Public Health 18:10578 [PMID: 34682324]
  22. Goldsmith R, Joanisse DR, Gallagher D, Pavlovich K, Shamoon E, Leibel RL, Rosenbaum M (2010) Effecs of experimental weight pertubation on skeletal muscle work efficiency, fuel utilization, and biochemistry in human subjects. Am J Physiol Regul Integr Comp Physiol 298:R79–R88 [PMID: 19889869]
  23. Gong D-W, He Y, Karas M, Reitman M (1997) Uncoupling protein-3 is a mediator of thermogenesis regulated by thyroid hormone, bêta3-adrenergic agonist, and leptin. The Journal of Biochemical Chemistry 272(39):24129–24132
  24. Grevendonk L, Connell NJ, Fealy CE, Bilet L, Bruls YMH, Mevenkamp J, Hoeks J (2021) Impact of aging and exercise on skeletal muscle mitochondrial capacity, energy metabolism, and physical function. Nat Commun. https://doi.org/10.1038/s41467-021-24956-2 [DOI: 10.1038/s41467-021-24956-2]
  25. Harper M-E, Green K, Brand MD (2008) The Efficiency of cellular energy transduction and its implication for obesity. Annu Rev Nutr 28:13–33 [PMID: 18407744]
  26. Hesselink MKC, Mensink M, Schrauwen P (2003) Human uncoupling protein-3 and obesity: an update. Obes Res 11:1429–1443 [PMID: 14694206]
  27. Hesselink MKC, Schrauwen P (2005) Towards the comprehension of the physiological role of UCP3. Horm Metab Res 37:550–554 [PMID: 16175492]
  28. Horowitz JF, Sidossis LS, Coyle EF (1994) High Efficiency of type 1 muscle fibers improves performance. Int J Sports Med 15:152–157 [PMID: 8005729]
  29. Jabbour G, Lambert M, O’Loughlin J, Tremblay A, Mathieu M-È (2013) Mechanical Efficiency during a cycling test is not lower in children with excess body weight and low aerobic fitness. Obesity 21:107–114 [PMID: 23505174]
  30. Jabbour G, Iancu H-D (2015) Mechanical efficiency improvement in relation to metabolic changes in sedentary obese adults. BMJ Open Sport Exerc Med 1:e000044 [PMID: 27900132]
  31. Jabbour G, Majed L (2019) Mechanical efficiency at different exercise intensities among adolescent boys with different body fat levels. Front Physiol. https://doi.org/10.3389/fphys.2019.00265 [DOI: 10.3389/fphys.2019.00265]
  32. Klimentidis YC, Raichlen DA, Bea J, Garcia DO, Wineinger NE, Mandarino LJ, Going SB (2018) Genome-wide association study of habitual physical activity in over 377,000 UK Biobank participants identifies multiple variants including CADM2 and APOE. Int J Obes (lond) 42(6):1161–1176. https://doi.org/10.1038/s41366-018-0120-3 [DOI: 10.1038/s41366-018-0120-3]
  33. Kozak L, Aninciado-Koza R (2008) UCP1: its involvement and utility in obesity. Int J Obes 32:S32–S38 [DOI: 10.1038/ijo.2008.236]
  34. Laaksonen MS, Kyrolainen H, Kemppainen J, Knuuti J, Kalliokoski KK (2018) Muscle free fatty acid uptake associates to mechanical efficiency during exercise in humans. Front Physiol. https://doi.org/10.3389/fphys.2018.01171 [DOI: 10.3389/fphys.2018.01171]
  35. Layec G, Haseler LJ, Hoff J, Richardson RS (2011) Evidence that higher ATP cost of muscular contraction contributes to the lower mechanical efficiency associated with COPD: preliminary findings. Am J Physiol Regul Integr Physiol 300:R1142–R1147 [DOI: 10.1152/ajpregu.00835.2010]
  36. Liang H, Ward WF (2006) PGC-1alpha: a key regulator of energy metabolism. Adv Physiol Educ 30(4):145–151. https://doi.org/10.1152/advan.00052.2006 [DOI: 10.1152/advan.00052.2006]
  37. Marin-Couture E, Pérusse L, Tremblay A (2021) The fit-active profile to better reflect the benefits of a lifelong vigorous physical activity participation: mini-review of literature and population data. Appl Physiol Nutr Metabol. https://doi.org/10.1139/apnm-2020-1109 [DOI: 10.1139/apnm-2020-1109]
  38. Martin S, Cule M, Basty N, Tyrrell J, Beaumont RN, Wood AR, Yaghootkar H (2021) Genetic evidence for different adiposity phenotypes and their opposing influences on extopic fat risk of cardiometabolic disease. Diabetes. https://doi.org/10.2337/db21-0129 [DOI: 10.2337/db21-0129]
  39. Martinez Tellez B, Sanchez Delgado G, Garcia Rivero Y, Alcantara JMA, Martinez-Avila WD, Munoz Hernandez MV, Ruiz JR (2017) A new personalized cooling protocl to activate brown adipose tissue in young adults. Front Physiol. https://doi.org/10.3389/fphys.2017.00863 [DOI: 10.3389/fphys.2017.00863]
  40. McConell GK, Lee-Young RS, Chen Z-P, Stepto NK, Huynh NN, Stephens TJ, Kemp BE (2005) Short-term exercise training in humans induces AMPK signalling during prolonged exercise independent of muscle glycogen. J Physiol 568(2):665–676. https://doi.org/10.1113/jphysiol.2005.089839 [DOI: 10.1113/jphysiol.2005.089839]
  41. Meneely GR, Kaltreider NL (1949) The Volune of the lung determined by helium dilution. Descr Method Comp Other Proc J Clin Invest 28(129):139
  42. Mogensen M, Bagger M, Pedersen PK, Fernström M, Sahlin K (2006) Cycling efficiency in humans is related to low UCP3 content and type I fibres but not mitochondrial efficiency. J Physiol 571(3):669–681 [PMID: 16423857]
  43. Ouellet V, Routhier-Labadie A, Bellemare W, Lakhal-Chaieb L, Turcotte É, Carpentier AC, Richard D (2011) Outdoor temperature, age, sex, body mass index and diabetic status determine the prevalence, mass, and glucose-uptake activity of 18f-fdg-detected bat in humans. J Clin Endocrinol Metab 96(1):192–199 [PMID: 20943785]
  44. Pérusse L (2020) Genetic variation in the response to exercise training: impact on physical fitness and performance. Princ Nutrigene Nurtigenom. https://doi.org/10.1016/B978-0-12-804572-5.00024-0 [DOI: 10.1016/B978-0-12-804572-5.00024-0]
  45. Perry CGR, Heigenhauser GJF, Bonen A, Spriet LL (2008) High intensity aerobic interval training increases fat and carbohydrate metabolic capacities in human skeletal muscle. Appl Physiol Nutr Metab 33:1112–1123 [PMID: 19088769]
  46. Phillips CM, Tierney AC, Perez-Martinez P, Defoort C, Blaak EE, Gjelstad IMF, Roche HM (2013) Obesity and body fat classification in the metabolic syndrome: impact on cardiometabolic risk metabotype. Obesity. https://doi.org/10.1002/oby.20263 [DOI: 10.1002/oby.20263]
  47. Piaggi P, Krakoff J, Bogardus C, Thearle MS (2013) Lower awake and fed thermogenesis’’ predicts future weight gain in subjects with abdominal adiposity. Diabetes 62:4043–4051 [PMID: 23974925]
  48. Pleguezuelos E, Del Carmen A, Llorensi G, Carcole J, Casarramona P, Moreno E, Garnacho-Castano MV (2021) Severe loss of mechanical efficiency in COVID-19 patients. J Cache Sarco Muscl 12:1056–1063 [DOI: 10.1002/jcsm.12739]
  49. Rhéaume C, Arsenault BJ, Dumas M-P, Pérusse L, Tremblay A, Bouchard C, Després J-P (2011) Contributions of cardiorespiratory fitness and visceral adiposity to six-year changes in cardiometabolic risk markers in apparently healthy men and women. J Clin Endocrinol Metab 96(5):1462–1468 [PMID: 21325457]
  50. Rosenbaum M, Vanderbone K, Goldsmith R, Simoneau J-A, Heymsfield S, Joanisse DR, Leibel RL (2003) Effects of experimental weight pertubation on skeletal muscle work efficiency in human subjects. Am J Physiol Regul Integr Comp Physiol 285:R183–R192 [PMID: 12609816]
  51. Ross R, Neeland IJ, Yamashita S, Shai I, Seidell J, Magni P, Després J-P (2020) Waist circumference as a vital sign in clnical pratice: a concensus Statement from the IAS and ICCR working group on visceral adiposity. Endocrinology 16:177–189. https://doi.org/10.1038/s41574-019-0310-7 [DOI: 10.1038/s41574-019-0310-7]
  52. Rothwell NJ, Stock MJ (1979) A role for brown adipose tissue in diet-induced thermogenesis. Nature 281:31–35 [PMID: 551265]
  53. Russell A, Wadley G, Snow R, Giacobino J-P, Muzzin P, Garnham A, Cameron-Smith D (2002) Slow component of VO2 kinetics: the effect of training status, fibre type, UCP3 mRNA and citrate synthase. Int J Obes 26:157–164 [DOI: 10.1038/sj.ijo.0801885]
  54. Schrauwen P, Hesselink MKC, Vaartjes I, Kornips E, Saris WJM, Giacobino J-P, Russell A (2002) Effect of acute exercise on uncoupling protein 3 is a fat metabolism-mediated effect. Am J Physiol Endocrinol Metab 282:E11–E17 [PMID: 11739077]
  55. Schrauwen P, Troost FJ, Xia J, Ravussin E, Saris WJM (1999) Skeletal muscle UCP2 and UCP3 expression in trained and untrained male subjects. Int J Obes 23:966–972 [DOI: 10.1038/sj.ijo.0801026]
  56. Schrauwen P, Russell AP, Moonen-Kornips E, Boon N, Hesselink MKC (2005) Effect of 2 weeks of endurance training on uncoupling protein 3 content in untrained human subjects. Acta Physiol Scand 183:273–280 [PMID: 15743387]
  57. Siri WE (1956) Body composition from fluid spaces and density: analysis of methods. Adv Biol Med Phys 4:239–280 [PMID: 13354513]
  58. Takaishi T, Yamamoto T, Ono T, Ito T, Moritani T (1998) Neuromuscular, metabolic, and kinetic adaptations for skilled pedaling performance in cyclists. Med Sci Sports Exerc 30(3):442–449. https://doi.org/10.1097/00005768-199803000-00016 [DOI: 10.1097/00005768-199803000-00016]
  59. Talanian JL, Holloway GO, Snook LA, Heigenhauser GJF, Bonen A, Spriet LL (2010) Exercise training increases sarcolemmal and mitochondiral fatty acid transport proteins in human skeletal muscle. Am J Physiol Endocrinol Metab 299:E180–E188 [PMID: 20484014]
  60. Tremblay A, Major G, Doucet É, Trayhurn P, Astrup A (2007) Role of adaptative thermogenesis in unsuccessful weight-loss intervention. Futur Lipidol 2(3):651–658 [DOI: 10.2217/17460875.2.6.651]
  61. Tremblay A, Pérusse L, Bertrand C, Jacob R, Couture C, Drapeau V (2023) Effects of sodium intake and cardiorespiratory fitness on body composition and genetic susceptibility to obesity: results from the quebec family study. Br J Nutr 129:77–86 [PMID: 35307046]
  62. Umberger BR, Gerritsen KGM, Martin PE (2006) Muscle fiber effects on energetically optimal cadences in cycling. J Biomech 39:1472–1479 [PMID: 15923008]
  63. van Marken Lichtenbelt WD, Vanhommerig JW, Smulders NM, Drossaerts JMAFL, Kemerink GJ, Bouvy ND, Teule GJJ (2009) Cold-activated brown adipose tissue in health men. New Engl J Med 360:1500–1508 [PMID: 19357405]
  64. Vijgen GHEJ, Bouvy ND, Teule GJJ, Brans B, Schrauwen P, van Marken Lichtenbelt WD (2011) Brown adipose tissue in morbidly obese subjects. PLoS ONE. https://doi.org/10.1371/journal.pone.0017247 [DOI: 10.1371/journal.pone.0017247]
  65. Virtanen KA, Lidell ME, Orava J, Heglind M, Westergren R, Niemi T, Nuutila P (2009) Functional brown adipose tissue in healthy adults. N Engl J Med 360:1518–1525 [PMID: 19357407]
  66. Yeh, S.-T. (2002). Using trapezoidal rule for the area under the curve calculation. Proc 27th Annu SAS Us Group Int 1–5
  67. Yoshioka M, Doucet E, St-Pierre S, Alméras N, Richard D, Labrie A, Tremblay A (2001) Impact of high-intensity exercise on energy expenditure, lipid oxydation and body fatness. Int J Obes 25:332–339 [DOI: 10.1038/sj.ijo.0801554]

MeSH Term

Humans
Male
Female
Adult
Body Composition
Blood Glucose
Middle Aged
Insulin
Exercise
Oxygen Consumption
Exercise Test

Chemicals

Blood Glucose
Insulin

Word Cloud

Created with Highcharts 10.0.0NMEbodycompositionglycemicprofileexercisevariablesfitnessstudymechanicalefficiencyparticipantsQFSmalesfemalesrespiratoryexchangeassessedglucose-insulintertilesadjustmentsdifferencesphysicalactivityfataimassessassociationnetmiddle-aged383 ± 143 yearsQuebecFamilyStudyAnalysescompletedsample605271334performedsubmaximaltestergometerconsistingthreeconsecutive6-minworkloadsincreasingintensitygascalculation[poweroutput/vO-vOseated]basedvalueslast3 minfirstworkloadtargetedpoweroutput30 WCorrelationsdependentcomputedseparatelyAssociationscomparinggroupssubjectscategorizedsex-specificageSignificantnegativecorrelationsobservedsexesComparisonacrossshowedindividualshighdisplayedfavorableadiposityprofilesremainedsignificantparticipationvigorouscardiorespiratorymeanratiowhereasbecamenon-significantadjustmentpercentfamilialdataindicateheritabilityreaches30%conclusionresultsshowbeyondaerobicactivity-participationadditionalactivity-relatedvariableindependentlyassociatedvariationsMechanicalefficiency:associationshealthyadultsBodyCardiorespiratoryHeredityObesityPhysical

Similar Articles

Cited By