Inter-kingdom communication and the sympoietic way of life.

Scott F Gilbert
Author Information
  1. Scott F Gilbert: Department of Biology, Swarthmore College, Swarthmore, PA, United States.

Abstract

Organisms are now seen as holobionts, consortia of several species that interact metabolically such that they sustain and scaffold each other's existence and propagation. Sympoiesis, the development of the symbiotic relationships that form holobionts, is critical for our understanding the origins and maintenance of biodiversity. Rather than being the read-out of a single genome, development has been found to be sympoietic, based on multigenomic interactions between zygote-derived cells and symbiotic microbes. These symbiotic and sympoietic interactions are predicated on the ability of cells from different kingdoms of life (e.g., bacteria and animals) to communicate with one another and to have their chemical signals interpreted in a manner that facilitates development. Sympoiesis, the creation of an entity by the interactions of other entities, is commonly seen in embryogenesis (e.g., the creation of lenses and retinas through the interaction of brain and epidermal compartments). In holobiont sympoiesis, interactions between partners of different domains of life interact to form organs and biofilms, wherein each of these domains acts as the environment for the other. If evolution is forged by changes in development, and if symbionts are routinely involved in our development, then changes in sympoiesis can constitute an important factor in evolution.

Keywords

References

  1. Physiol Rev. 2019 Oct 1;99(4):1877-2013 [PMID: 31460832]
  2. Nature. 2023 Jan;613(7945):639-649 [PMID: 36697862]
  3. Science. 2011 Nov 4;334(6056):670-4 [PMID: 22053049]
  4. Proc Biol Sci. 2024 Apr 30;291(2021):20240122 [PMID: 38628120]
  5. Cell Host Microbe. 2015 Jan 14;17(1):72-84 [PMID: 25532804]
  6. Nature. 2021 Jul;595(7867):409-414 [PMID: 34194038]
  7. Hist Philos Life Sci. 2021 Aug 9;43(3):99 [PMID: 34370107]
  8. Science. 2013 Feb 1;339(6119):548-54 [PMID: 23363771]
  9. Science. 2001 May 11;292(5519):1115-8 [PMID: 11352068]
  10. Proc Natl Acad Sci U S A. 2012 Jul 10;109(28):11246-51 [PMID: 22733751]
  11. Appl Environ Microbiol. 2006 Jan;72(1):802-10 [PMID: 16391121]
  12. Environ Microbiol. 2013 Nov;15(11):2937-50 [PMID: 23819708]
  13. Mol Biosyst. 2016 Jul 19;12(8):2359-72 [PMID: 27216801]
  14. Front Immunol. 2017 Dec 07;8:1678 [PMID: 29270167]
  15. Glob Chang Biol. 2022 Mar;28(6):2006-2025 [PMID: 34957651]
  16. Curr Biol. 2011 Aug 23;21(16):1366-72 [PMID: 21835622]
  17. Proc Natl Acad Sci U S A. 2011 Sep 20;108(38):16050-5 [PMID: 21876150]
  18. Appl Environ Microbiol. 2015 Oct;81(20):7078-87 [PMID: 26231653]
  19. Cell Metab. 2022 Nov 1;34(11):1779-1791.e9 [PMID: 36240759]
  20. Front Plant Sci. 2022 Jul 22;13:918675 [PMID: 35937361]
  21. Elife. 2018 May 29;7: [PMID: 29809134]
  22. Nat Genet. 2021 Feb;53(2):156-165 [PMID: 33462485]
  23. Mol Psychiatry. 2014 Feb;19(2):146-8 [PMID: 23689536]
  24. J Immunol. 2004 Jan 15;172(2):1118-24 [PMID: 14707086]
  25. Science. 2019 Nov 1;366(6465): [PMID: 31672864]
  26. Front Psychiatry. 2022 Feb 03;12:755171 [PMID: 35185631]
  27. Nat Neurosci. 2023 Jul;26(7):1208-1217 [PMID: 37365313]
  28. mBio. 2014 Dec 16;5(6): [PMID: 25516613]
  29. Sci Rep. 2019 Apr 9;9(1):5821 [PMID: 30967657]
  30. Science. 2011 Nov 18;334(6058):990-2 [PMID: 22021671]
  31. Appl Environ Microbiol. 2012 Jul;78(13):4620-6 [PMID: 22522684]
  32. Cell. 2019 May 30;177(6):1600-1618.e17 [PMID: 31150625]
  33. Proc Natl Acad Sci U S A. 2001 May 22;98(11):6247-52 [PMID: 11353833]
  34. Nat Commun. 2017 Sep 26;8(1):698 [PMID: 28951596]
  35. Reprod Nutr Dev. 2006 Mar-Apr;46(2):205-10 [PMID: 16597426]
  36. Curr Biol. 2020 May 18;30(10):1949-1957.e6 [PMID: 32243856]
  37. Nat Rev Microbiol. 2010 Mar;8(3):218-30 [PMID: 20157340]
  38. Nature. 2016 May 04;533(7604):543-546 [PMID: 27144353]
  39. Front Microbiol. 2024 Mar 07;15:1366181 [PMID: 38516012]
  40. Proc Natl Acad Sci U S A. 2011 Mar 15;108 Suppl 1:4653-8 [PMID: 20679197]
  41. Environ Microbiol. 2018 Aug 22;: [PMID: 30136358]
  42. EMBO Rep. 2021 Feb 3;22(2):e52269 [PMID: 33528098]
  43. PLoS Biol. 2008 Dec 23;6(12):e2 [PMID: 19222304]
  44. FEMS Microbiol Rev. 2019 Jul 1;43(4):362-379 [PMID: 31050730]
  45. Annu Rev Microbiol. 2015;69:145-66 [PMID: 26195303]
  46. Science. 2012 Jun 8;336(6086):1255-62 [PMID: 22674335]
  47. Dev Biol. 2011 Sep 1;357(1):73-82 [PMID: 21699890]
  48. PLoS Biol. 2016 Nov 18;14(11):e2000225 [PMID: 27861590]
  49. Science. 2020 Feb 28;367(6481): [PMID: 32108090]
  50. Proc Natl Acad Sci U S A. 2021 Jul 6;118(27): [PMID: 34210797]
  51. Science. 2012 Jun 8;336(6086):1262-7 [PMID: 22674330]
  52. Elife. 2016 Dec 13;5: [PMID: 27960075]
  53. Environ Microbiol. 2007 Jan;9(1):3-4 [PMID: 17227400]
  54. Science. 2010 Nov 19;330(6007):1102-4 [PMID: 21097935]
  55. Q Rev Biol. 2012 Dec;87(4):325-41 [PMID: 23397797]
  56. Proc Natl Acad Sci U S A. 2018 Jun 19;115(25):6458-6463 [PMID: 29866843]
  57. Elife. 2019 Apr 05;8: [PMID: 30950794]
  58. PLoS One. 2011;6(5):e20113 [PMID: 21625510]
  59. J Biol Chem. 2011 Apr 8;286(14):11909-18 [PMID: 21288901]
  60. Cell. 2016 Nov 3;167(4):915-932 [PMID: 27814521]
  61. Science. 2014 Jul 4;345(6192):94-8 [PMID: 24994654]
  62. Nat Rev Genet. 2015 Oct;16(10):611-22 [PMID: 26370902]
  63. J Appl Microbiol. 2004;96(4):761-71 [PMID: 15012814]
  64. EMBO Rep. 2011 Jul 01;12(8):775-84 [PMID: 21720391]
  65. J Gen Microbiol. 1956 Jul;14(3):733-48 [PMID: 13346034]
  66. ISME J. 2013 Jun;7(6):1069-79 [PMID: 23426008]
  67. Nat Rev Microbiol. 2021 Apr;19(4):241-255 [PMID: 33093662]
  68. Microbiol Mol Biol Rev. 2017 Nov 8;81(4): [PMID: 29118049]
  69. PLoS Biol. 2013;11(8):e1001631 [PMID: 23976878]
  70. Nature. 2007 Oct 18;449(7164):843-9 [PMID: 17943121]
  71. Proc Natl Acad Sci U S A. 2004 Mar 30;101(13):4596-601 [PMID: 15070763]
  72. Nat Genet. 2021 Feb;53(2):147-155 [PMID: 33462482]
  73. Cell Metab. 2011 Sep 7;14(3):403-14 [PMID: 21907145]
  74. Cell Host Microbe. 2013 Aug 14;14(2):183-94 [PMID: 23954157]
  75. Proc Natl Acad Sci U S A. 2018 Apr 17;115(16):4006-4014 [PMID: 29581311]
  76. PLoS Negl Trop Dis. 2014 Aug 28;8(8):e3096 [PMID: 25165813]
  77. Front Cell Dev Biol. 2023 Nov 02;11:1181145 [PMID: 38020881]
  78. Nature. 2018 Oct;562(7728):583-588 [PMID: 30356187]
  79. Cell. 2014 Nov 6;159(4):789-99 [PMID: 25417156]
  80. Proc Natl Acad Sci U S A. 2002 Nov 26;99(24):15451-5 [PMID: 12432102]
  81. Biomolecules. 2023 Jul 16;13(7): [PMID: 37509173]
  82. PLoS Pathog. 2015 Apr 23;11(4):e1004798 [PMID: 25906062]
  83. Dev Comp Immunol. 2016 Jul;60:202-8 [PMID: 26875632]
  84. Nat Commun. 2020 Apr 20;11(1):1904 [PMID: 32312972]
  85. Br J Nutr. 2013 Oct;110(7):1253-62 [PMID: 23507238]
  86. Biosystems. 2010 Apr;100(1):70-8 [PMID: 20097257]
  87. J Immunol. 2005 Mar 15;174(6):3158-63 [PMID: 15749843]
  88. Biol Direct. 2018 Oct 26;13(1):24 [PMID: 30621755]
  89. Nature. 2024 Jan;625(7996):813-821 [PMID: 38172637]
  90. FEMS Microbiol Rev. 2008 Aug;32(5):723-35 [PMID: 18549407]
  91. Oxid Med Cell Longev. 2022 Feb 10;2022:9206039 [PMID: 35186190]
  92. Front Microbiol. 2021 Oct 04;12:719112 [PMID: 34671328]
  93. Evol Dev. 2020 Jan;22(1-2):154-164 [PMID: 31332951]
  94. Genome Res. 2023 Oct;33(10):1690-1707 [PMID: 37884341]
  95. Front Microbiol. 2022 Jun 06;13:900948 [PMID: 35733962]
  96. Vet Clin North Am Food Anim Pract. 2017 Nov;33(3):427-439 [PMID: 28807474]
  97. PLoS Biol. 2024 Apr 5;22(4):e3002571 [PMID: 38578728]
  98. Environ Microbiol. 2010 Aug;12(8):2190-203 [PMID: 21966913]
  99. Nat Commun. 2018 Nov 30;9(1):5091 [PMID: 30504906]
  100. Science. 2008 Oct 31;322(5902):702 [PMID: 18974344]
  101. Nat Rev Microbiol. 2021 Oct;19(10):666-679 [PMID: 34089010]
  102. Front Microbiol. 2017 Jun 08;8:991 [PMID: 28642740]
  103. Proc Natl Acad Sci U S A. 2015 Aug 18;112(33):10169-76 [PMID: 25713367]
  104. Biosystems. 1975 Mar;6(3):153-64 [PMID: 1120179]
  105. ISME J. 2018 Apr;12(4):1094-1108 [PMID: 29348580]
  106. J Insect Physiol. 2021 Aug-Sep;133:104274 [PMID: 34216600]
  107. Mol Microbiol. 2010 Nov;78(4):903-15 [PMID: 20815823]
  108. Biol Rev Camb Philos Soc. 2020 Oct;95(5):1308-1324 [PMID: 32406121]
  109. Nature. 2020 Oct;586(7828):281-286 [PMID: 32968276]
  110. Bioessays. 2018 Sep;40(9):e1800060 [PMID: 29989180]
  111. Proc Natl Acad Sci U S A. 2018 Oct 16;115(42):10696-10701 [PMID: 30275294]
  112. Microbiome. 2014 Nov 17;2:41 [PMID: 25408893]
  113. Neuron. 2021 Dec 15;109(24):3930-3953 [PMID: 34653349]
  114. PLoS Biol. 2007 May;5(5):e96 [PMID: 17425405]
  115. Curr Biol. 2021 Jan 25;31(2):433-437.e3 [PMID: 33220182]
  116. Stud Hist Philos Sci. 2022 Feb;91:148-158 [PMID: 34922182]
  117. Neuron. 2019 Jan 16;101(2):246-259.e6 [PMID: 30522820]
  118. mBio. 2013 Nov 05;4(6):e00860-13 [PMID: 24194543]
  119. Cell. 2017 Sep 7;170(6):1175-1183.e11 [PMID: 28867285]
  120. J Med Primatol. 2011 Feb;40(1):52-8 [PMID: 20946146]
  121. Proc Natl Acad Sci U S A. 2012 May 15;109(20):E1230-7 [PMID: 22517738]
  122. PLoS Biol. 2016 Aug 19;14(8):e1002533 [PMID: 27541692]
  123. Curr Opin Insect Sci. 2020 Feb;37:8-15 [PMID: 31726321]
  124. Annu Rev Entomol. 2013;58:293-311 [PMID: 22994548]
  125. PLoS One. 2013 Oct 18;8(10):e78126 [PMID: 24205124]
  126. Proc Natl Acad Sci U S A. 2022 May 3;119(18):e2200795119 [PMID: 35467986]
  127. Mol Microbiol. 2019 Oct;112(4):1326-1338 [PMID: 31400167]
  128. Sci Transl Med. 2014 Sep 3;6(252):252ra120 [PMID: 25186175]
  129. Nat Commun. 2018 Jun 8;9(1):2233 [PMID: 29884786]
  130. PLoS Biol. 2015 Aug 18;13(8):e1002226 [PMID: 26284777]
  131. Proc Natl Acad Sci U S A. 2022 Feb 15;119(7): [PMID: 35145026]
  132. Science. 2009 Aug 21;325(5943):992-4 [PMID: 19696350]
  133. Dev Immunol. 1992;2(2):141-50 [PMID: 1386544]
  134. Curr Opin Neurobiol. 2023 Feb;78:102652 [PMID: 36463579]
  135. Sci Adv. 2019 Jul 03;5(7):eaav8391 [PMID: 31281883]
  136. Commun Biol. 2024 Jul 19;7(1):883 [PMID: 39030323]
  137. Proc Biol Sci. 2020 Mar 11;287(1922):20192900 [PMID: 32126958]
  138. Genome Biol. 2019 Aug 23;20(1):172 [PMID: 31443695]
  139. Cell. 2012 Aug 3;150(3):470-80 [PMID: 22863002]
  140. Comp Biochem Physiol B. 1979;62(4):459-63 [PMID: 318452]
  141. mSystems. 2016 Mar 29;1(2): [PMID: 27822520]
  142. J Bacteriol. 2000 Aug;182(16):4578-86 [PMID: 10913092]
  143. Nature. 2019 Oct;574(7776):117-121 [PMID: 31534227]
  144. J Exp Biol. 2024 Mar 7;227(Suppl_1): [PMID: 38449332]
  145. Nucleic Acids Res. 2015 Nov 16;43(20):9600-12 [PMID: 26420832]
  146. Proc Natl Acad Sci U S A. 2013 Feb 26;110(9):3229-36 [PMID: 23391737]
  147. Anim Microbiome. 2023 May 15;5(1):28 [PMID: 37189209]
  148. Appl Environ Microbiol. 2002 May;68(5):2519-28 [PMID: 11976129]
  149. PLoS Pathog. 2005 Oct;1(2):e14 [PMID: 16228015]
  150. Cell. 2005 Jul 15;122(1):107-18 [PMID: 16009137]
  151. Dev Comp Immunol. 2019 Oct;99:103399 [PMID: 31195052]
  152. Proc Natl Acad Sci U S A. 2012 May 29;109(22):8618-22 [PMID: 22529384]
  153. Sci Signal. 2011 Dec 13;4(203):pe46 [PMID: 22169475]
  154. Proc Natl Acad Sci U S A. 2011 Feb 15;108(7):3047-52 [PMID: 21282636]
  155. Hist Philos Life Sci. 2013;35(2):239-64 [PMID: 24466634]
  156. Nature. 2018 Mar 8;555(7695):210-215 [PMID: 29489753]
  157. Insect Biochem Mol Biol. 2020 Dec;127:103471 [PMID: 32966874]

Word Cloud

Created with Highcharts 10.0.0developmentinteractionssymbioticsympoieticlifesympoiesisevolutionseenholobiontsinteractSympoiesisformcellsdifferentegcreationholobiontdomainschangesOrganismsnowconsortiaseveralspeciesmetabolicallysustainscaffoldother'sexistencepropagationrelationshipscriticalunderstandingoriginsmaintenancebiodiversityRatherread-outsinglegenomefoundbasedmultigenomiczygote-derivedmicrobespredicatedabilitykingdomsbacteriaanimalscommunicateoneanotherchemicalsignalsinterpretedmannerfacilitatesentityentitiescommonlyembryogenesislensesretinasinteractionbrainepidermalcompartmentspartnersorgansbiofilmswhereinactsenvironmentforgedsymbiontsroutinelyinvolvedcanconstituteimportantfactorInter-kingdomcommunicationwaycooperationsymbiosis

Similar Articles

Cited By