c-di-GMP and AHL signals-triggered chemical communication under electrical signaling disruption restores biofilm formation.

Qian Zhu, Yanyan Zheng, Xingwang Zhou, Dunjia Wang, Mengjiao Yuan, Dingkang Qian, Sha Liang, Wenbo Yu, Jiakuan Yang, Huijie Hou, Jingping Hu
Author Information
  1. Qian Zhu: School of Environmental Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, Hubei,, China.
  2. Yanyan Zheng: College of Chemistry and Chemical Engineering, Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, Hubei Normal University, 11 Cihu Road, Huangshi 435002, Hubei, China.
  3. Xingwang Zhou: College of Chemistry and Chemical Engineering, Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, Hubei Normal University, 11 Cihu Road, Huangshi 435002, Hubei, China.
  4. Dunjia Wang: College of Chemistry and Chemical Engineering, Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, Hubei Normal University, 11 Cihu Road, Huangshi 435002, Hubei, China.
  5. Mengjiao Yuan: School of Environmental Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, Hubei,, China.
  6. Dingkang Qian: School of Environmental Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, Hubei,, China.
  7. Sha Liang: School of Environmental Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, Hubei,, China.
  8. Wenbo Yu: School of Environmental Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, Hubei,, China.
  9. Jiakuan Yang: School of Environmental Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, Hubei,, China.
  10. Huijie Hou: School of Environmental Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, Hubei,, China.
  11. Jingping Hu: School of Environmental Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, Hubei,, China.

Abstract

Electrogenic biofilms, which have attracted considerable attention in simultaneous wastewater treatment and energy recovery in bioelectrochemical systems, are regulated by chemical communication and potassium channel-mediated electrical signaling. However, how these two communication pathways interact with each other has not been thoroughly investigated. This study first explored the roles of chemical communication, including intracellular bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP) and extracellular N-acyl-homoserine lactone (AHL)-mediated quorum sensing, in electrogenic biofilm formation through an integrated analysis of transcriptomics and metabolomics. Electrical signaling disruption inhibited the formation and electroactivity of biofilm, which was mainly ascribed to the reduction in biofilm viability and extracellular protein/polysaccharide ratio. The upregulation of expression levels of genes encoding c-di-GMP and AHL synthesis by transcriptomic analysis, and the increased secretion of N-butanoyl-L-homoserine lactone by metabolomic analysis confirmed the enhancement of chemical communication under electrical signaling disruption, thus indicating a compensatory mechanism among different signaling pathways. Furthermore, protein-protein interaction network showed the convergence of different signaling pathways, with c-di-GMP-related genes acting as central bridges. This study highlights the interaction of different signaling pathways, especially the resilience of c-di-GMP signaling to adverse external stresses, thereby laying the foundation for facilitating electrogenic biofilm formation under adverse conditions in practical applications.

Keywords

References

  1. Water Res. 2022 Apr 15;213:118185 [PMID: 35183018]
  2. Microbiology (Reading). 2017 May;163(5):754-764 [PMID: 28463102]
  3. Bioengineered. 2022 Mar;13(3):6420-6440 [PMID: 35227160]
  4. Front Cell Infect Microbiol. 2014 Jun 20;4:82 [PMID: 24999454]
  5. ISME J. 2020 Aug;14(8):2078-2089 [PMID: 32398660]
  6. Environ Pollut. 2022 Jan 1;292(Pt B):118342 [PMID: 34653589]
  7. J Bacteriol. 2008 Apr;190(7):2527-36 [PMID: 18223081]
  8. Bioresour Technol. 2022 Nov;364:128109 [PMID: 36244602]
  9. Water Res. 2017 Nov 15;125:280-287 [PMID: 28866443]
  10. Biotechnol Adv. 2022 May-Jun;56:107915 [PMID: 35101567]
  11. Environ Sci Technol. 2020 Jun 2;54(11):6730-6740 [PMID: 32390423]
  12. J Hazard Mater. 2022 Jan 5;421:126740 [PMID: 34333409]
  13. Environ Microbiol. 2006 Oct;8(10):1805-15 [PMID: 16958761]
  14. Bioessays. 2022 Apr;44(4):e2100193 [PMID: 35195292]
  15. Nature. 2015 Nov 5;527(7576):59-63 [PMID: 26503040]
  16. Sci Rep. 2018 Jun 5;8(1):8617 [PMID: 29872101]
  17. J Bacteriol. 1996 Sep;178(17):5291-4 [PMID: 8752350]
  18. Water Res. 2023 Sep 1;243:120421 [PMID: 37523919]
  19. Environ Sci Technol. 2015 Apr 21;49(8):5227-35 [PMID: 25810405]
  20. J Hazard Mater. 2022 Sep 15;438:129500 [PMID: 35792431]
  21. Water Res. 2022 Jul 15;220:118618 [PMID: 35609427]
  22. NPJ Biofilms Microbiomes. 2020 Jun 12;6(1):24 [PMID: 32532998]
  23. Biosens Bioelectron. 2017 Nov 15;97:369-376 [PMID: 28624619]
  24. Water Res. 2017 Apr 15;113:181-190 [PMID: 28214775]
  25. Nat Rev Microbiol. 2016 Aug 11;14(9):563-75 [PMID: 27510863]
  26. Cell. 2017 Jan 12;168(1-2):200-209.e12 [PMID: 28086091]
  27. Bioresour Technol. 2022 Jan;344(Pt B):126218 [PMID: 34728350]
  28. Environ Sci Technol. 2018 Jul 17;52(14):8016-8026 [PMID: 29898596]
  29. Biosens Bioelectron. 2019 Feb 15;127:1-9 [PMID: 30583280]
  30. Water Res. 2019 Aug 1;159:294-301 [PMID: 31102858]
  31. Sci Total Environ. 2022 Sep 10;838(Pt 2):156176 [PMID: 35613646]
  32. Crit Rev Biochem Mol Biol. 2022 Jun;57(3):305-332 [PMID: 34937434]
  33. Infect Immun. 2021 Jun 16;89(7):e0076620 [PMID: 33875474]
  34. Sci Total Environ. 2022 Dec 1;850:158035 [PMID: 35981588]
  35. Waste Manag. 2021 Apr 1;124:136-143 [PMID: 33621757]
  36. Aging Dis. 2021 Dec 1;12(8):1879-1897 [PMID: 34881075]
  37. Microbiol Res. 2023 Mar;268:127302 [PMID: 36640720]
  38. Sci Total Environ. 2020 Feb 25;705:135796 [PMID: 31806298]
  39. NPJ Biofilms Microbiomes. 2021 Oct 28;7(1):79 [PMID: 34711833]
  40. Small. 2016 Sep;12(33):4481-5 [PMID: 27409066]

Word Cloud

Created with Highcharts 10.0.0signalingcommunicationbiofilmchemicalc-di-GMPelectricalpathwaysformationAHLelectrogenicanalysisdisruptiondifferentbioelectrochemicalstudyextracellularlactonequorumsensinggenesinteractionadverseElectrogenicbiofilmsattractedconsiderableattentionsimultaneouswastewatertreatmentenergyrecoverysystemsregulatedpotassiumchannel-mediatedHowevertwointeractthoroughlyinvestigatedfirstexploredrolesincludingintracellularbis-3'-5'-cyclicdimericguanosinemonophosphateN-acyl-homoserine-mediatedintegratedtranscriptomicsmetabolomicsElectricalinhibitedelectroactivitymainlyascribedreductionviabilityprotein/polysaccharideratioupregulationexpressionlevelsencodingsynthesistranscriptomicincreasedsecretionN-butanoyl-L-homoserinemetabolomicconfirmedenhancementthusindicatingcompensatorymechanismamongFurthermoreprotein-proteinnetworkshowedconvergencec-di-GMP-relatedactingcentralbridgeshighlightsespeciallyresilienceexternalstressestherebylayingfoundationfacilitatingconditionspracticalapplicationssignals-triggeredrestoressystem

Similar Articles

Cited By