Somatostatin signalling coordinates energy metabolism allocation to reproduction in zebrafish.

Jie Chen, Wenting Zhao, Lei Cao, Rute S T Martins, Adelino V M Can��rio
Author Information
  1. Jie Chen: International Research Center for Marine Biosciences, Ministry of Science and Technology and National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China.
  2. Wenting Zhao: International Research Center for Marine Biosciences, Ministry of Science and Technology and National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China.
  3. Lei Cao: International Research Center for Marine Biosciences, Ministry of Science and Technology and National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China.
  4. Rute S T Martins: CCMAR/CIMAR Centro de Ci��ncias do Mar do Algarve, Universidade do Algarve, Campus de Gambelas, Faro, 8005-139, Portugal.
  5. Adelino V M Can��rio: International Research Center for Marine Biosciences, Ministry of Science and Technology and National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China. acanario@ualg.pt. ORCID

Abstract

BACKGROUND: Energy allocation between growth and reproduction determines puberty onset and fertility. In mammals, peripheral hormones such as leptin, insulin and ghrelin signal metabolic information to the higher centres controlling gonadotrophin-releasing hormone neurone activity. However, these observations could not be confirmed in lower vertebrates, suggesting that other factors may mediate the energetic trade-off between growth and reproduction. A bioinformatic and experimental study suggested co-regulation of the circadian clock, reproductive axis and growth-regulating genes in zebrafish. While loss-of-function of most of the identified co-regulated genes had no effect or only had mild effects on reproduction, no such information existed about the co-regulated somatostatin, well-known for its actions on growth and metabolism.
RESULTS: We show that somatostatin signalling is pivotal in regulating fecundity and metabolism. Knock-out of zebrafish somatostatin 1.1 (sst1.1) and somatostatin 1.2 (sst1.2) caused a 20-30% increase in embryonic primordial germ cells, and sst1.2 adults laid 40% more eggs than their wild-type siblings. The sst1.1 and sst1.2 mutants had divergent metabolic phenotypes: the former had 25% more pancreatic ��-cells, were hyperglycaemic and glucose intolerant, and had increased adipocyte mass; the latter had 25% more pancreatic ��-cells, improved glucose clearance and reduced adipocyte mass.
CONCLUSIONS: We conclude that somatostatin signalling regulates energy metabolism and fecundity through anti-proliferative and modulatory actions on primordial germ cells, pancreatic insulin and glucagon cells and the hypothalamus. The ancient origin of the somatostatin system suggests it could act as a switch linking metabolism and reproduction across vertebrates. The results raise the possibility of applications in human and animal fertility.

Keywords

References

  1. Endocrinology. 2008 Dec;149(12):5996-6005 [PMID: 18687786]
  2. Endocrinology. 2008 Oct;149(10):5035-42 [PMID: 18566124]
  3. PLoS One. 2016 Jun 29;11(6):e0158141 [PMID: 27355207]
  4. Proc Natl Acad Sci U S A. 2016 Mar 15;113(11):3084-9 [PMID: 26903647]
  5. Front Neurosci. 2018 May 03;12:302 [PMID: 29773976]
  6. Nature. 1981 May 7;291(5810):76-7 [PMID: 6112710]
  7. Mech Dev. 2002 Jul;115(1-2):133-7 [PMID: 12049777]
  8. J Neurosci. 2002 Jul 15;22(14):6265-71 [PMID: 12122085]
  9. Endocrinology. 2020 Jan 1;161(1): [PMID: 31758175]
  10. PLoS One. 2015 Dec 07;10(12):e0144158 [PMID: 26641263]
  11. Biol Reprod. 2021 Mar 11;104(3):589-601 [PMID: 33276384]
  12. Dev Biol. 2009 Aug 15;332(2):299-308 [PMID: 19500567]
  13. Endocrinology. 2017 Jun 1;158(6):1827-1837 [PMID: 28379327]
  14. Proc Natl Acad Sci U S A. 2007 Jun 5;104(23):9691-6 [PMID: 17535919]
  15. Mol Cell Endocrinol. 2008 May 14;286(1-2):148-54 [PMID: 17919810]
  16. Endocrinology. 2018 Jan 1;159(1):163-183 [PMID: 29053844]
  17. Dev Biol. 2007 May 1;305(1):377-87 [PMID: 17362906]
  18. Cell Death Dis. 2018 Jun 7;9(6):682 [PMID: 29880854]
  19. Horm Metab Res. 2015 Jan;47(1):56-63 [PMID: 25350519]
  20. Gen Comp Endocrinol. 2007 Mar;151(1):1-26 [PMID: 17286975]
  21. Front Neuroendocrinol. 2018 Jan;48:37-49 [PMID: 28754629]
  22. J Endocrinol. 2015 Nov;227(2):93-103 [PMID: 26446275]
  23. Mol Metab. 2021 Mar;45:101166 [PMID: 33484949]
  24. Hum Reprod. 2016 Oct;31(10):2369-76 [PMID: 27591240]
  25. Gen Comp Endocrinol. 1986 Aug;63(2):252-63 [PMID: 2877919]
  26. Proc Natl Acad Sci U S A. 1991 Aug 15;88(16):7224-7 [PMID: 1651499]
  27. Am J Physiol Endocrinol Metab. 2008 Oct;295(4):E751-61 [PMID: 18647881]
  28. J Exp Zool. 1989 Feb;249(2):158-64 [PMID: 2566643]
  29. Dev Biol. 2007 Jan 1;301(1):192-204 [PMID: 17059815]
  30. Mol Cell Endocrinol. 2014 Nov;397(1-2):4-14 [PMID: 25289807]
  31. Mol Cell Endocrinol. 2020 Nov 1;517:110963 [PMID: 32745576]
  32. Curr Biol. 2003 Aug 19;13(16):1429-34 [PMID: 12932328]
  33. J Neurochem. 2007 Jan;100(2):468-78 [PMID: 17083445]
  34. Stem Cell Reports. 2015 Jan 13;4(1):61-73 [PMID: 25434820]
  35. Regul Pept. 1997 Mar 26;69(2):95-103 [PMID: 9178352]
  36. Mol Cell Endocrinol. 2020 Jan 1;499:110593 [PMID: 31560938]
  37. Curr Opin Cell Biol. 2015 Oct;36:80-5 [PMID: 26232877]
  38. Gene. 2010 Sep 1;463(1-2):21-8 [PMID: 20472043]
  39. Nat Commun. 2022 Feb 4;13(1):692 [PMID: 35121731]
  40. Development. 1997 Aug;124(16):3157-65 [PMID: 9272956]
  41. Regul Pept. 2009 Aug 7;156(1-3):1-8 [PMID: 19362110]
  42. Biol Reprod. 2004 Sep;71(3):813-9 [PMID: 15140796]
  43. Am J Physiol. 1991 Sep;261(3 Pt 2):R609-13 [PMID: 1679608]
  44. Int J Dev Biol. 2006;50(8):691-9 [PMID: 17051479]
  45. Cell Metab. 2013 Jan 8;17(1):10-9 [PMID: 23312280]
  46. Proc Natl Acad Sci U S A. 1989 Dec;86(23):9616-20 [PMID: 2574465]
  47. PLoS One. 2016 Nov 21;11(11):e0166394 [PMID: 27870856]
  48. Elife. 2020 Aug 12;9: [PMID: 32783809]
  49. Elife. 2022 Jan 21;11: [PMID: 35060900]
  50. Gen Comp Endocrinol. 2020 Jun 1;292:113467 [PMID: 32201232]
  51. Gen Comp Endocrinol. 1993 Oct;92(1):62-70 [PMID: 7903264]
  52. J Histochem Cytochem. 2000 Oct;48(10):1369-75 [PMID: 10990490]
  53. Zebrafish. 2010 Jun;7(2):205-13 [PMID: 20515318]
  54. Endocrinology. 1997 Dec;138(12):5641-4 [PMID: 9389553]
  55. FASEB J. 2006 Jun;20(8):1230-2 [PMID: 16705083]
  56. Dev Dyn. 1995 Jul;203(3):253-310 [PMID: 8589427]
  57. Endocrinology. 2019 Mar 1;160(3):568-586 [PMID: 30668682]
  58. Mol Hum Reprod. 2010 Sep;16(9):632-6 [PMID: 20086005]
  59. Science. 2000 Sep 22;289(5487):2122-5 [PMID: 11000114]
  60. Mol Reprod Dev. 2013 May;80(5):384-92 [PMID: 23533185]
  61. Front Neuroendocrinol. 2013 Aug;34(3):228-52 [PMID: 23872332]
  62. J Reprod Immunol. 1990 Jun;17(3):229-38 [PMID: 1976807]
  63. Proc Natl Acad Sci U S A. 2007 Oct 23;104(43):16958-63 [PMID: 17940041]
  64. Gen Comp Endocrinol. 2019 Aug 1;279:139-147 [PMID: 30836103]
  65. Endocrinology. 2015 Mar;156(3):1052-65 [PMID: 25551181]
  66. Gen Comp Endocrinol. 2021 Oct 1;312:113873 [PMID: 34329604]
  67. Genetics. 2019 Oct;213(2):529-553 [PMID: 31399485]
  68. Endocrinology. 2015 Feb;156(2):589-99 [PMID: 25406015]
  69. Mol Cell Endocrinol. 2010 Aug 5;324(1-2):82-6 [PMID: 20138117]
  70. Methods. 2001 Dec;25(4):402-8 [PMID: 11846609]
  71. Lancet Diabetes Endocrinol. 2020 Feb;8(2):134-149 [PMID: 31635966]
  72. Dev Genet. 1998;22(3):288-99 [PMID: 9621435]
  73. Gen Comp Endocrinol. 2013 Jul 1;188:110-7 [PMID: 23313073]
  74. Mol Cell Endocrinol. 2008 May 14;286(1-2):5-17 [PMID: 18406049]
  75. Am J Physiol Endocrinol Metab. 2003 Apr;284(4):E671-8 [PMID: 12626323]
  76. Dev Biol. 2010 Aug 15;344(2):849-56 [PMID: 20553901]
  77. Proc Natl Acad Sci U S A. 1992 Nov 1;89(21):10267-71 [PMID: 1279674]
  78. Int J Mol Sci. 2020 Jun 11;21(11): [PMID: 32545257]
  79. Endocr Rev. 1991 Aug;12(3):252-71 [PMID: 1935821]
  80. Front Neuroendocrinol. 1999 Oct;20(4):317-63 [PMID: 10569281]
  81. Trends Ecol Evol. 2007 Feb;22(2):80-6 [PMID: 17056152]
  82. Nat Methods. 2012 Jul;9(7):671-5 [PMID: 22930834]
  83. Nat Commun. 2022 Feb 18;13(1):969 [PMID: 35181671]
  84. Pigment Cell Melanoma Res. 2015 Mar;28(2):196-209 [PMID: 25469713]
  85. Proc Natl Acad Sci U S A. 1995 Feb 28;92(5):1580-4 [PMID: 7878022]
  86. Dev Cell. 2001 Dec;1(6):841-51 [PMID: 11740945]
  87. Digestion. 1994;55 Suppl 1:1-9 [PMID: 7907564]
  88. Mol Cell Endocrinol. 2008 May 14;286(1-2):18-25 [PMID: 18206294]

Grants

  1. UIDB/04326/2020/Funda����o para a Ci��ncia e a Tecnologia
  2. UIDP/04326/2020/Funda����o para a Ci��ncia e a Tecnologia
  3. LA/P/0101/2020/Funda����o para a Ci��ncia e a Tecnologia
  4. 2022.08828.PTDC/Funda����o para a Ci��ncia e a Tecnologia

MeSH Term

Animals
Female
Energy Metabolism
Fertility
Reproduction
Signal Transduction
Somatostatin
Zebrafish
Zebrafish Proteins

Chemicals

Somatostatin
Zebrafish Proteins
sst1.1 protein, zebrafish

Word Cloud

Created with Highcharts 10.0.0somatostatinreproductionmetabolism1sst12growthzebrafishsignallingcellspancreaticallocationfertilityinsulinmetabolicinformationvertebratesgenesco-regulatedactionsfecundityprimordialgerm25%��-cellsglucoseadipocytemassenergyBACKGROUND:Energydeterminespubertyonsetmammalsperipheralhormonesleptinghrelinsignalhighercentrescontrollinggonadotrophin-releasinghormoneneuroneactivityHoweverobservationsconfirmedlowersuggestingfactorsmaymediateenergetictrade-offbioinformaticexperimentalstudysuggestedco-regulationcircadianclockreproductiveaxisgrowth-regulatingloss-of-functionidentifiedeffectmildeffectsexistedwell-knownRESULTS:showpivotalregulatingKnock-outcaused20-30%increaseembryonicadultslaid40%eggswild-typesiblingsmutantsdivergentphenotypes:formerhyperglycaemicintolerantincreasedlatterimprovedclearancereducedCONCLUSIONS:concluderegulatesanti-proliferativemodulatoryglucagonhypothalamusancientoriginsystemsuggestsactswitchlinkingacrossresultsraisepossibilityapplicationshumananimalSomatostatincoordinatesDiabetesFecundityMetabolismOvaryPancreasTrade-offZebrafish

Similar Articles

Cited By