TIPRL Regulates Stemness and Survival in Lung Cancer Stem Cells through CaMKK2-CaMK4-CREB Feedback Loop Activation.

In-Sung Song, Yu-Jeong Jeong, Jae Kwang Yun, Jimin Lee, Hae-Jun Yang, Young-Ho Park, Sun-Uk Kim, Seung-Mo Hong, Peter C W Lee, Geun Dong Lee, Sung-Wuk Jang
Author Information
  1. In-Sung Song: Department of Biochemistry and Molecular Biology, Brain Korea 21 Project, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 138-736, Republic of Korea.
  2. Yu-Jeong Jeong: Department of Biochemistry and Molecular Biology, Brain Korea 21 Project, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 138-736, Republic of Korea.
  3. Jae Kwang Yun: Department of Thoracic and Cardiovascular Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 138-736, Republic of Korea.
  4. Jimin Lee: Department of Biochemistry and Molecular Biology, Brain Korea 21 Project, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 138-736, Republic of Korea.
  5. Hae-Jun Yang: Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungchenongbuk-do, 28116, Republic of Korea.
  6. Young-Ho Park: Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungchenongbuk-do, 28116, Republic of Korea.
  7. Sun-Uk Kim: Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungchenongbuk-do, 28116, Republic of Korea.
  8. Seung-Mo Hong: Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 138-736, Republic of Korea.
  9. Peter C W Lee: Department of Biochemistry and Molecular Biology, Brain Korea 21 Project, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 138-736, Republic of Korea.
  10. Geun Dong Lee: Department of Biochemistry and Molecular Biology, Brain Korea 21 Project, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 138-736, Republic of Korea.
  11. Sung-Wuk Jang: Department of Biochemistry and Molecular Biology, Brain Korea 21 Project, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 138-736, Republic of Korea. ORCID

Abstract

Frequent recurrence and metastasis caused by cancer stem cells (CSCs) are major challenges in lung cancer treatment. Therefore, identifying and characterizing specific CSC targets are crucial for the success of prospective targeted therapies. In this study, it is found that upregulated TOR Signaling Pathway Regulator-Like (TIPRL) in lung CSCs causes sustained activation of the calcium/calmodulin-dependent protein kinase kinase 2 (CaMKK2) signaling pathway by binding to CaMKK2, thereby maintaining stemness and survival. CaMKK2-mediated activation of CaM kinase 4 (CaMK4) leads to phosphorylation of cAMP response element-binding protein (CREB) at Ser129 and Ser133, which is necessary for its maximum activation and the downstream constitutive expression of its target genes (Bcl2 and HMG20A). TIPRL depletion sensitizes lung CSCs to afatinib-induced cell death and reduces distal metastasis of lung cancer in vivo. It is determined that CREB activates the transcription of TIPRL in lung CSCs. The positive feedback loop consisting of CREB and TIPRL induces the sustained activation of the CaMKK2-CaMK4-CREB axis as a driving force and upregulates the expression of stemness- and survival-related genes, promoting tumorigenesis in patients with lung cancer. Thus, TIPRL and the CaMKK2 signaling axis may be promising targets for overcoming drug resistance and reducing metastasis in lung cancer.

Keywords

References

  1. Gastroenterology. 2012 Nov;143(5):1341-1351 [PMID: 22841785]
  2. Nature. 2018 Jan 24;553(7689):446-454 [PMID: 29364287]
  3. CA Cancer J Clin. 2021 Jan;71(1):7-33 [PMID: 33433946]
  4. Oncogene. 2007 Sep 6;26(41):6021-30 [PMID: 17384681]
  5. FEBS J. 2007 Nov;274(22):5891-904 [PMID: 17944932]
  6. Cancer Discov. 2022 Jan;12(1):31-46 [PMID: 35022204]
  7. Gastroenterology. 2015 Oct;149(4):1006-16.e9 [PMID: 26091938]
  8. Expert Opin Emerg Drugs. 2014 Mar;19(1):51-65 [PMID: 24354593]
  9. Eur J Pharmacol. 2018 Sep 5;834:188-196 [PMID: 30031797]
  10. J Biol Chem. 2021 Jul;297(1):100908 [PMID: 34171357]
  11. Biochem Pharmacol. 2007 Sep 1;74(5):787-800 [PMID: 17632087]
  12. Nature. 2014 Oct 2;514(7520):54-8 [PMID: 25079331]
  13. Cell Mol Life Sci. 2020 Oct;77(20):4049-4067 [PMID: 32347317]
  14. CA Cancer J Clin. 2001 Jan-Feb;51(1):15-36 [PMID: 11577478]
  15. N Engl J Med. 2019 Jun 6;380(23):2237-2245 [PMID: 31167052]
  16. Cell. 2011 Mar 4;144(5):646-74 [PMID: 21376230]
  17. Nat Rev Drug Discov. 2021 Jul;20(7):551-569 [PMID: 34002056]
  18. Nat Cell Biol. 2005 Nov;7(11):1113-7 [PMID: 16227968]
  19. Nat Rev Mol Cell Biol. 2011 Mar;12(3):141-51 [PMID: 21346730]
  20. Cancer Cell. 2020 Jul 13;38(1):129-143.e7 [PMID: 32531271]
  21. Nat Commun. 2017 Dec 22;8(1):2272 [PMID: 29273778]
  22. J Biol Chem. 1994 Dec 23;269(51):32187-93 [PMID: 7798217]
  23. Nat Med. 2017 Oct 6;23(10):1124-1134 [PMID: 28985214]
  24. Trends Cell Biol. 2005 Sep;15(9):457-9 [PMID: 16084096]
  25. Cancer Res. 2008 Feb 15;68(4):981-8 [PMID: 18281471]
  26. Cancer Biol Ther. 2007 Dec;6(12):1908-15 [PMID: 18059166]
  27. Trends Mol Med. 2008 Apr;14(4):152-60 [PMID: 18329957]
  28. Physiol Rev. 2009 Jan;89(1):121-45 [PMID: 19126756]
  29. Hepatology. 2015 Aug;62(2):505-20 [PMID: 25847065]
  30. Int J Biochem Cell Biol. 2018 Mar;96:157-164 [PMID: 29355757]
  31. Cell Death Dis. 2018 Feb 15;9(3):279 [PMID: 29449530]
  32. J Clin Med. 2021 Jun 14;10(12): [PMID: 34198693]
  33. BMC Cancer. 2016 Feb 24;16:149 [PMID: 26911831]
  34. Cell Stem Cell. 2012 Nov 2;11(5):589-95 [PMID: 23122286]
  35. N Engl J Med. 2005 Jul 14;353(2):172-87 [PMID: 16014887]
  36. BMC Oral Health. 2022 Nov 5;22(1):473 [PMID: 36335317]
  37. Cancers (Basel). 2020 Oct 28;12(11): [PMID: 33126560]
  38. Cell. 1989 Nov 17;59(4):675-80 [PMID: 2573431]
  39. Nat Rev Urol. 2022 Jun;19(6):367-380 [PMID: 35474107]
  40. Cell. 1993 Aug 27;74(4):609-19 [PMID: 8358790]
  41. Lung Cancer. 2014 Oct;86(1):78-84 [PMID: 25130083]
  42. Cell Metab. 2012 Jan 4;15(1):100-9 [PMID: 22225879]
  43. Trends Cancer. 2019 Feb;5(2):111-127 [PMID: 30755304]
  44. Stem Cell Res Ther. 2015 Oct 15;6:198 [PMID: 26472041]
  45. Cancer Sci. 2015 Oct;106(10):1377-84 [PMID: 26202045]
  46. J Invest Dermatol. 2022 Jan;142(1):189-200.e8 [PMID: 34242660]
  47. Oncogene. 2015 Oct 8;34(41):5264-76 [PMID: 25639869]
  48. Biochimie. 2020 Dec;179:32-45 [PMID: 32946993]
  49. Cancer Cell Int. 2021 Jan 25;21(1):73 [PMID: 33494763]
  50. Redox Biol. 2021 Nov 15;48:102190 [PMID: 34798428]
  51. Int J Mol Sci. 2021 Jul 06;22(14): [PMID: 34298877]
  52. Proc Natl Acad Sci U S A. 1998 Apr 28;95(9):4997-5002 [PMID: 9560217]
  53. Cell Commun Signal. 2021 Sep 25;19(1):98 [PMID: 34563205]
  54. Cancers (Basel). 2021 Jun 11;13(12): [PMID: 34208132]
  55. Cell. 2020 Apr 30;181(3):514-517 [PMID: 32359434]
  56. Int J Cancer. 2011 Aug 15;129(4):820-31 [PMID: 21520032]
  57. Adv Sci (Weinh). 2024 Sep;11(36):e2406309 [PMID: 39076120]
  58. Cancer Drug Resist. 2020 Feb 28;3(2):171-178 [PMID: 35582610]
  59. Stem Cells. 2010 Apr;28(4):721-33 [PMID: 20201066]
  60. Clin Cancer Res. 2009 Apr 15;15(8):2583-7 [PMID: 19351775]

Grants

  1. 2022R1A2B5B01001782/Ministry of Education, Science and Technology
  2. 2020R1A6A3A01098464/Ministry of Education

MeSH Term

Calcium-Calmodulin-Dependent Protein Kinase Kinase
Lung Neoplasms
Humans
Neoplastic Stem Cells
Mice
Animals
Signal Transduction
Cyclic AMP Response Element-Binding Protein
Calcium-Calmodulin-Dependent Protein Kinase Type 4
Cell Line, Tumor
Feedback, Physiological
Disease Models, Animal

Chemicals

Calcium-Calmodulin-Dependent Protein Kinase Kinase
CAMKK2 protein, human
Cyclic AMP Response Element-Binding Protein
Calcium-Calmodulin-Dependent Protein Kinase Type 4
CAMK4 protein, human
CREB1 protein, human

Word Cloud

Created with Highcharts 10.0.0lungcancerTIPRLactivationmetastasisCSCskinaseCaMKK2CREBstemtargetssustainedproteinsignalingexpressiongenescellfeedbackloopCaMKK2-CaMK4-CREBaxisdrugresistanceFrequentrecurrencecausedcellsmajorchallengestreatmentThereforeidentifyingcharacterizingspecificCSCcrucialsuccessprospectivetargetedtherapiesstudyfoundupregulatedTORSignalingPathwayRegulator-Likecausescalcium/calmodulin-dependent2pathwaybindingtherebymaintainingstemnesssurvivalCaMKK2-mediatedCaM4CaMK4leadsphosphorylationcAMPresponseelement-bindingSer129Ser133necessarymaximumdownstreamconstitutivetargetBcl2HMG20Adepletionsensitizesafatinib-induceddeathreducesdistalvivodeterminedactivatestranscriptionpositiveconsistinginducesdrivingforceupregulatesstemness-survival-relatedpromotingtumorigenesispatientsThusmaypromisingovercomingreducingRegulatesStemnessSurvivalLungCancerStemCellsFeedbackLoopActivationCaMKK2���CaMK4���CREB

Similar Articles

Cited By (2)